forked from y-ncao/Python-Study
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLongest_Palindromic_Substring.py
55 lines (50 loc) · 1.76 KB
/
Longest_Palindromic_Substring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
"""
class Solution:
# @return a string
def longestPalindrome(self, s):
N = len(s)
dp = [ [ False for j in range(N)] for i in range(N) ]
for i in range(N):
dp[i][i] = True
for i in range(N-1):
dp[i][i+1] = s[i] == s[i+1]
length = 2
max_length = 1
while length < N:
start = 0
while start + length < N:
if dp[start+1][start+length-1] and s[start] == s[start+length]:
dp[start][start+length] = True
max_length = max(max_length, length)
start += 1
length += 1
return max_length
# Notice
# 1. dp[i][j] means if s[i:j] is a palindrome
# 2. dp[i][i] = True
# dp[i][i+1] = True if s[i] == s[i+1]
# 3. dp[start][start+length] = True if s[start] == s[star+length] and dp[start+1][start+length-1]
# 4. Update length
# This dp way is O(n^2) will get TLE
"""
Other Ways
def longestPalindrome(self, s):
arr = ['$', '#']
for i in range(len(s)):
arr.append(s[i])
arr.append('#')
p = [0] * len(arr)
mx, pos, ansp = 0, 0, 0
for i in range(1, len(arr)):
p[i] = min(mx - i, p[2 * pos - i]) if mx > i else 1
while p[i] + i < len(arr) and arr[i + p[i]] == arr[i - p[i]]:
p[i] += 1
if p[i] + i > mx:
mx, pos = p[i] + i, i
if p[i] > p[ansp]:
ansp = i
st = (ansp - p[ansp] + 1) / 2
return s[st:st + p[ansp] - 1]
"""