forked from jocicmarko/ultrasound-nerve-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
153 lines (113 loc) · 5.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from __future__ import print_function
import os
from skimage.transform import resize
from skimage.io import imsave
import numpy as np
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
from keras import backend as K
from data import load_train_data, load_test_data
K.set_image_data_format('channels_last') # TF dimension ordering in this code
img_rows = 96
img_cols = 96
smooth = 1.
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
def get_unet():
inputs = Input((img_rows, img_cols, 1))
conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)
conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool2)
conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool3)
conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)
conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)
up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)
conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(up6)
conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv6)
up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)
conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(up7)
conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv7)
up8 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(up8)
conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv8)
up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)
conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(up9)
conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv9)
conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)
model = Model(inputs=[inputs], outputs=[conv10])
model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef])
return model
def preprocess(imgs):
imgs_p = np.ndarray((imgs.shape[0], img_rows, img_cols), dtype=np.uint8)
for i in range(imgs.shape[0]):
imgs_p[i] = resize(imgs[i], (img_cols, img_rows), preserve_range=True)
imgs_p = imgs_p[..., np.newaxis]
return imgs_p
def train_and_predict():
print('-'*30)
print('Loading and preprocessing train data...')
print('-'*30)
imgs_train, imgs_mask_train = load_train_data()
imgs_train = preprocess(imgs_train)
imgs_mask_train = preprocess(imgs_mask_train)
imgs_train = imgs_train.astype('float32')
mean = np.mean(imgs_train) # mean for data centering
std = np.std(imgs_train) # std for data normalization
imgs_train -= mean
imgs_train /= std
imgs_mask_train = imgs_mask_train.astype('float32')
imgs_mask_train /= 255. # scale masks to [0, 1]
print('-'*30)
print('Creating and compiling model...')
print('-'*30)
model = get_unet()
model_checkpoint = ModelCheckpoint('weights.h5', monitor='val_loss', save_best_only=True)
print('-'*30)
print('Fitting model...')
print('-'*30)
model.fit(imgs_train, imgs_mask_train, batch_size=32, nb_epoch=20, verbose=1, shuffle=True,
validation_split=0.2,
callbacks=[model_checkpoint])
print('-'*30)
print('Loading and preprocessing test data...')
print('-'*30)
imgs_test, imgs_id_test = load_test_data()
imgs_test = preprocess(imgs_test)
imgs_test = imgs_test.astype('float32')
imgs_test -= mean
imgs_test /= std
print('-'*30)
print('Loading saved weights...')
print('-'*30)
model.load_weights('weights.h5')
print('-'*30)
print('Predicting masks on test data...')
print('-'*30)
imgs_mask_test = model.predict(imgs_test, verbose=1)
np.save('imgs_mask_test.npy', imgs_mask_test)
print('-' * 30)
print('Saving predicted masks to files...')
print('-' * 30)
pred_dir = 'preds'
if not os.path.exists(pred_dir):
os.mkdir(pred_dir)
for image, image_id in zip(imgs_mask_test, imgs_id_test):
image = (image[:, :, 0] * 255.).astype(np.uint8)
imsave(os.path.join(pred_dir, str(image_id) + '_pred.png'), image)
if __name__ == '__main__':
train_and_predict()