diff --git a/docs/_posts/prabod/2025-06-23-minilm_l6_v2_en.md b/docs/_posts/prabod/2025-06-23-minilm_l6_v2_en.md
new file mode 100644
index 00000000000000..046feaad5a900e
--- /dev/null
+++ b/docs/_posts/prabod/2025-06-23-minilm_l6_v2_en.md
@@ -0,0 +1,120 @@
+---
+layout: model
+title: MiniLM L6 V2
+author: John Snow Labs
+name: minilm_l6_v2
+date: 2025-06-23
+tags: [en, open_source, openvino]
+task: Embeddings
+language: en
+edition: Spark NLP 5.5.1
+spark_version: 3.0
+supported: true
+engine: openvino
+annotator: MiniLMEmbeddings
+article_header:
+ type: cover
+use_language_switcher: "Python-Scala-Java"
+---
+
+## Description
+
+Sentence embeddings using MiniLM.
+
+MiniLM, a lightweight and efficient sentence embedding model that can generate text embeddings
+for various NLP tasks (e.g., classification, retrieval, clustering, text evaluation, etc.)
+
+## Predicted Entities
+
+
+
+{:.btn-box}
+
+
+[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/minilm_l6_v2_en_5.5.1_3.0_1750674121132.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
+[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/minilm_l6_v2_en_5.5.1_3.0_1750674121132.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
+
+## How to use
+
+
+
+
+{% include programmingLanguageSelectScalaPythonNLU.html %}
+```python
+import sparknlp
+from sparknlp.base import *
+from sparknlp.annotator import *
+from pyspark.ml import Pipeline
+
+documentAssembler = DocumentAssembler() \
+ .setInputCol("text") \
+ .setOutputCol("document")
+embeddings = MiniLMEmbeddings.pretrained() \
+ .setInputCols(["document"]) \
+ .setOutputCol("minilm_embeddings")
+embeddingsFinisher = EmbeddingsFinisher() \
+ .setInputCols(["minilm_embeddings"]) \
+ .setOutputCols("finished_embeddings") \
+ .setOutputAsVector(True)
+pipeline = Pipeline().setStages([
+ documentAssembler,
+ embeddings,
+ embeddingsFinisher
+])
+
+data = spark.createDataFrame([["This is a sample sentence for embedding generation.",
+ "Another example sentence to demonstrate MiniLM embeddings.",
+]]).toDF("text")
+result = pipeline.fit(data).transform(data)
+result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+```
+```scala
+import spark.implicits._
+import com.johnsnowlabs.nlp.base.DocumentAssembler
+import com.johnsnowlabs.nlp.annotators.Tokenizer
+import com.johnsnowlabs.nlp.embeddings.MiniLMEmbeddings
+import com.johnsnowlabs.nlp.EmbeddingsFinisher
+import org.apache.spark.ml.Pipeline
+
+val documentAssembler = new DocumentAssembler()
+ .setInputCol("text")
+ .setOutputCol("document")
+
+val embeddings = MiniLMEmbeddings.pretrained("minilm_l6_v2", "en")
+ .setInputCols("document")
+ .setOutputCol("minilm_embeddings")
+
+val embeddingsFinisher = new EmbeddingsFinisher()
+ .setInputCols("minilm_embeddings")
+ .setOutputCols("finished_embeddings")
+ .setOutputAsVector(true)
+
+val pipeline = new Pipeline().setStages(Array(
+ documentAssembler,
+ embeddings,
+ embeddingsFinisher
+))
+
+val data = Seq("This is a sample sentence for embedding generation.",
+"Another example sentence to demonstrate MiniLM embeddings."
+
+).toDF("text")
+val result = pipeline.fit(data).transform(data)
+
+result.selectExpr("explode(finished_embeddings) as result").show(1, 80)
+```
+
+
+{:.model-param}
+## Model Information
+
+{:.table-model}
+|---|---|
+|Model Name:|minilm_l6_v2|
+|Compatibility:|Spark NLP 5.5.1+|
+|License:|Open Source|
+|Edition:|Official|
+|Input Labels:|[documents]|
+|Output Labels:|[minilm]|
+|Language:|en|
+|Size:|17.2 MB|
\ No newline at end of file