-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.htm
238 lines (226 loc) · 10.2 KB
/
index.htm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Markdowns</title>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-64480261-1', 'auto');
ga('send', 'pageview');
</script>
</head>
<body>
<h1>R Markdowns</h1>
<p><i>To access markdown code, replace any </i>.html<i> by </i>.Rmd</p>
<table border="0" width="82%">
<tr>
<td width="350" valign="top">
<h3>R Language</h3>
<ul>
<li><a href="commonFunctions.html">Common Functions</a></li>
<li><a href="basisRData.html">Data Types and Data Manipulation</a></li>
<li><a href="RClasses.html">Environments & Classes</a></li>
<li><a href="expressions.html">Expressions</a></li>
<li><a href="functionalProgramming.html">Functional Programming</a></li>
<li><a href="stringsStuff.html">Manipulating strings</a></li>
<li><a href="memoization.html">Memoization</a></li>
<li>Using with other languages:
<ul>
<li><a href="langs/cpp.html">C++</a>,
<a href="langs/python.html">Python</a>,
<a href="langs/javascript.html">JavaScript</a>,
<a href="langs/matlab.html">Matlab</a>
</li>
</ul>
</li>
</ul>
<h3><b>R Libraries</b></h3>
<ul>
<li><a href="animation/index.html">Animations</a></li>
<li><a href="benchmarking/benchmarking.html">Benchmarking</a> &
<a href="benchmarking/profiling.html">Profiling</a></li>
<li><a href="odes/index.html">Differential Equations Solving</a></li>
<li><a href="GraphicalTools/graphicalTools.html">Graphical Tools</a>
<ul>
<li><a href="GraphicalTools/colorPalette.html">Color Palettes</a></li>
<li><a href="GraphicalTools/diagrammeR.html">DiagrammeR</a></li>
<li><a href="GraphicalTools/EBImage.html">EBImage Processing</a></li>
<li><a href="GraphicalTools/ggplot2.html">ggplot2</a></li>
<li>
<a href="maps/index.html">Maps I</a>,
<a href="maps/maps2/maps.html">Maps II</a></li>
</ul></li>
<li>Manipulating tables: <a href="dplyr/dplyr.html">dplyr</a></li>
<li><a href="neuralnets/neuralnets.html">Neural Networks</a></li>
<li>Pipelining functions: <a href="magrittr.html">magrittr</a></li>
<li><a href="relationalAlgebra.html">Relational Algebra (SQL)</a></li>
<li><a href="sql/index.html">SQL tutorial using postgreSQL</a></li>
<li><a href="symbolic/index.html">Symbolic Computation</a></li>
<li><a href="web/index.html">Web Scraping</a></li>
</ul>
</td>
<td width="350" valign="top">
<h3>Math</h3>
<ul>
<li><a href="algebra/algebra.html">Algebra</a></li>
<li><a href="combinatorics/combinatorics.html">Combinatorics</a></li>
<li><a href="distributions/index.html">Distributions</a><ul>
<li><a href="distributions/distr.html">Creating</a></li>
<li><a href="distributions/fitting.html">Fitting</a></li>
</ul>
</li>
<li><a href="fourier/fourier.html">Fourier Analysis</a> (some
<a href="fourier/fourier2.html">applications</a>)</li>
<li><a href="graphs/graphs.html">Graphs</a></li>
<li><a href="fat_tails/heavy_tails.html">Heavy Tails</a></li>
<ul>
<li><a href="fat_tails/extremistan.html">Extremistan</a></li>
</ul>
<li><a href="inf_theory/informationtheory.html">Information Theory</a><ul>
<li><a href="inf_theory/empirical-entropy.html">Empirical Entropy</a></li>
</ul>
</li>
<li><a href="maxent/maxent.html">Maximum Entropy</a></li>
<li><a href="noise/noise.html">Noise</a></li>
<li><a href="optimization/optimization.html">Optimization</a>
<ul>
<li><a href="optimization/CVXR.html">CVXR</a></li>
</ul>
</li>
<li><a href="powerlaw/powerlaw.html">Power Laws</a></li>
<li>Probability
<ul>
<li><a href="prob/puzzles.html"><font size="2">Puzzles</font></a><font size="2">,
<a href="prob/range.html">Range of Uniform rv's</a>,
<a href="prob/mle_estimation.html">An estimation eg</a>.
<a href="prob/eg_videos.html">Bayes Th. & advertising (eg)</a>
</font></li>
</ul>
</li>
<li><a href="svd/svd.html">Singular Value Decomposition</a></li>
</ul>
</td>
<td width="379" valign="top">
<h3>Machine Learning/Statistics</h3>
<ul>
<li><a href="abc/index.html">Approximate Bayesian Computing</a></li>
<li><a href="decision/index.html">Bayesian Decision Theory</a></li>
<li><a href="bayesnets/bayesnets.html">Bayesian Networks</a></li>
<li><a href="biasvariance/biasvariance.html">Bias-Variance Analysis</a></li>
<li><a href="bugs/bugs_tutorial.html">BUGS tutorial</a>
<ul>
<li>
<font size="2">
<a href="bugs/lincoln.html">Lincoln Index</a>,
<a href="bugs/hyraxes.html">Tagging Hyraxes</a>,
<a href="bugs/changepoint.html">Ln.Reg.Change Point</a>,
<a href="bugs/lighthouse.html">Lighthouse</a>
</font>
</li>
</ul>
<li><a href="censoring/censoring.html">Censored & Truncated Data</a> (with BUGS/Stan)</li>
<li><a href="circular/index.html">Circular Statistics</a> (with BUGS/Stan)</li>
<li><a href="tree/tree.html">Classification & Regression Trees</a></li>
<li><a href="clustering/clustering.html">Clustering</a></li>
<li><a href="copula/index.html">Copulas</a></li>
<li><a href="dp/dp.html">Dirichlet Processes</a></li>
<li><a href="EM/EM.html">Expectation-Maximization</a></li>
<li><a href="factoranalysis/factoranalysis.html">Factor Analysis</a></li>
<li><a href="ica/index.html">Independent Component Analysis</a></li>
<li><a href="PRML/chapter4.4.html">Laplace Approximation</a></li>
<li><a href="discriminant_analysis/discriminant_analysis.html">Linear &
Quadratic Discriminant Analysis</a></li>
<li><a href="markov/markov.html">Markov Model & HMM</a></li>
<li><a href="missing/index.html">Missing Data</a></li>
<li><a href="EM/GaussianMix.html">Mixture of Gaussians</a></li>
<li><a href="naive_bayes/naivebayes.html">Naïve Bayes</a></li>
<li><a href="pca/pca.html">Principal Component Analysis</a></li>
<li><a href="rbf/rbf.html">Radial Basis Functions</a></li>
<li><a href="regression/regression.html">Regression</a></li>
<li><a href="bootstrap/resamplings.html">Resampling & Bootstrap</a>
<ul>
<li><a href="bootstrap/stat_resampling.html">Resampling</a></li>
<li><a href="bootstrap/buckets.html">The Two Buckets Model</a></li>
</ul>
<li><a href="spectralclustering/spectralclustering.html">Spectral Clustering</a></li>
<li><a href="ECS/index.html">Statistical Computation & Simulation</a></li>
<li><a href="svm/svm.html">Support Vector Machines</a></li>
<li><a href="ts/index.html">Time Series</a></li>
<li><a href="variational_inference/variational.html">Variational Inference</a>
<li>Bishop's <i>Pattern Recognition and ML</i>
<ul><li>Chapters:
<a href="PRML/chapter3.html">3</a>,
<a href="PRML/chapter4.html">4</a>
<a href="PRML/chapter4.4.html">4.4</a>,
<a href="PRML/chapter6.html">6</a>,
<a href="PRML/chapter7.html">7</a>,
<a href="PRML/chapter8.html">8</a>,
<a href="PRML/chapter9.html">9</a>,
<a href="variational_inference/variational.html">10.1</a>,
<a href="PRML/chapter11.html">11</a>, <a href="PRML/chapter14.html">14</a></li></ul>
</li>
</td>
</tr>
</table>
<h3>Links</h3>
<ul>
<li>
<a href="https://www.youtube.com/playlist?list=PL1i2mdKutNaICujRMqCi1mPkHuMG_Ksa3">
Bayesian Tutorials & Courses</a> @ Youtube</li>
<li><a href="http://stats.stackexchange.com/questions/tagged/bayesian">Bayes</a>
QA
@ Cross Validated</li>
<li>Blogs: <a href="https://www.countbayesie.com/">Count Bayesie</a>;
<a href="http://sumsar.net/">Publishable Stuff</a>;
<a href="https://www.allendowney.com/blog/">Probably Overthinking It</a>;
<a href="https://maximum-entropy-blog.blogspot.com/">Maximum Entropy</a>;
<br>
<a href="http://varianceexplained.org/">Variance Explained</a>;
<a href="https://fabiandablander.com/">Fabian Dablander</a>;
<a href="https://jakevdp.github.io/tag/bayesianism.html">Pythonic
Perambulations</a>; <a href="http://www.johnmyleswhite.com/">John Myles
White</a></li>
<li>Related Courses:<ul>
<li>
<a href="http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/">Linear Algebra</a> (by Gilbert Strang @ MIT);
</li>
<li>Calculus (<a href="http://ocw.mit.edu/courses/mathematics/18-01-single-variable-calculus-fall-2006/">Single
Variable</a> &
<a href="http://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/index.htm">Multi-Variable</a> @ MIT);
</li>
<li>
<a href="https://www.edx.org/course/introduction-probability-science-mitx-6-041x-1">Probability</a> (by John Tsitsiklis @ edX);
</li>
<li><a href="https://www.youtube.com/playlist?list=PLD63A284B7615313A">Machine Learning</a> (by Abu Mostafa @
Caltech); </li>
<li><a href="https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA">Machine Learning</a> (by Mathematical Monk);
</li>
<li>
<a href="https://online.stanford.edu/courses/soe-yeecvx101-convex-optimization">Convex Optimization</a> (by Stephen Boyd @ Stanford);
</li>
<li><a href="https://www.youtube.com/user/mathematicalmonk">Information Theory</a>
(by Mathematical Monk);
</li>
<li>
<a href="https://www.edx.org/course/combinatorial-mathematics-zu-he-shu-xue-tsinghuax-60240013x-1">Combinatorics</a> (by Yuchun Ma @
<span class="instructor-org">Tsinghua
University</span>)</li>
</ul></li>
<li>
<a href="https://www.amazon.co.uk/hz/wishlist/ls/37ZW3X00X7941?&sort=default">Related Books</a> @ Amazon</li>
<li>Bayesian Statistics Course, FCUL 12/13: <a href="EB-exs/solutions.html">Solutions</a>,
<a href="EB-exs/bugs_exs.html">BUGS</a> (in Portuguese)</li>
</ul>
<table border="0" width="45%"><tr><td><i>
Disclaimer: This webpage started as a private collection of tutorials
and notes until the web-crawlers made it public. Some code is mine, some
is from other people. I tried to insert all relevant references but if I
forgot someone or something, please let me know and I'll correct it.
Also, reporting bugs, typos or errors will be appreciated (jpneto AT
fc.ul.pt).
</i></td></tr></table>
</body>
</html>