-
Notifications
You must be signed in to change notification settings - Fork 36
/
jCuckooSearchAlgorithm.m
135 lines (126 loc) · 2.95 KB
/
jCuckooSearchAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
%[2009]-"Cuckoo search via Levy flights"
% (9/12/2020)
function CS = jCuckooSearchAlgorithm(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
Pa = 0.25; % discovery rate
alpha = 1; % constant
beta = 1.5; % levy component
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'Pa'), Pa = opts.Pa; end
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'beta'), beta = opts.beta; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Fitness
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Best cuckoo nest
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
% Pre
Xnew = zeros(N,dim);
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Iterations
while t <= max_Iter
% {1} Random walk/Levy flight phase
for i = 1:N
% Levy distribution
L = jLevyDistribution(beta,dim);
for d = 1:dim
% Levy flight (1)
Xnew(i,d) = X(i,d) + alpha * L(d) * (X(i,d) - Xgb(d));
end
% Boundary
XB = Xnew(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
Xnew(i,:) = XB;
end
% Fintess
for i = 1:N
% Fitness
Fnew = fun(feat,label,(Xnew(i,:) > thres),opts);
% Greedy selection
if Fnew <= fit(i)
fit(i) = Fnew;
X(i,:) = Xnew(i,:);
end
end
% {2} Discovery and abandon worse nests phase
Xj = X(randperm(N),:);
Xk = X(randperm(N),:);
for i = 1:N
Xnew(i, :) = X(i,:);
r = rand();
for d = 1:dim
% A fraction of worse nest is discovered with a probability
if rand() < Pa
Xnew(i,d) = X(i,d) + r * (Xj(i,d) - Xk(i,d));
end
end
% Boundary
XB = Xnew(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
Xnew(i,:) = XB;
end
% Fitness
for i = 1:N
% Fitness
Fnew = fun(feat,label,(Xnew(i,:) > thres),opts);
% Greedy selection
if Fnew <= fit(i)
fit(i) = Fnew;
X(i,:) = Xnew(i,:);
end
% Best cuckoo
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
curve(t) = fitG;
fprintf('\nIteration %d Best (CS)= %f',t,curve(t))
t = t + 1;
end
% Select features
Pos = 1:dim;
Sf = Pos((Xgb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
CS.sf = Sf;
CS.ff = sFeat;
CS.nf = length(Sf);
CS.c = curve;
CS.f = feat;
CS.l = label;
end
%// Levy Flight //
function LF = jLevyDistribution(beta,dim)
% Sigma
nume = gamma(1 + beta) * sin(pi * beta / 2);
deno = gamma((1 + beta) / 2) * beta * 2 ^ ((beta - 1) / 2);
sigma = (nume / deno) ^ (1 / beta);
% Parameter u & v
u = randn(1,dim) * sigma;
v = randn(1,dim);
% Step
step = u ./ abs(v) .^ (1 / beta);
LF = 0.01 * step;
end