-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
178 lines (139 loc) · 5.56 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from flask import Flask, render_template, request, jsonify, redirect
import torch
import io
from PyPDF2 import PdfReader
from docx import Document
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import regex
import numpy as np
from PIL import Image
import pytesseract
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
app = Flask(__name__)
model_path = "rimuruu1/TextDetection" # Update with your model path
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/privacy-policy')
def privacy_policy():
return render_template('pp.html')
@app.route('/terms-of-service')
def terms_of_service():
return render_template('tos.html')
def extractpdf(file):
paragraphs = []
try:
pdf_reader = PdfReader(file)
num_pages = len(pdf_reader.pages)
for page_num in range(num_pages):
page = pdf_reader.pages[page_num]
paragraphs.append(page.extract_text())
except Exception as e:
print("An error occurred while extracting PDF:", str(e))
return paragraphs
def extractdocx(file):
paragraphs = []
try:
doc = Document(file)
for paragraph in doc.paragraphs:
paragraphs.append(paragraph.text)
except Exception as e:
print("An error occurred while extracting DOCX:", str(e))
return paragraphs
def extractimage(file):
image = np.array(Image.open(file))
paragraphs = pytesseract.image_to_string(image)
return paragraphs
def extracttxt(file):
paragraphs = []
try:
text = file.read().decode('utf-8')
paragraphs = text.split('\n')
except Exception as e:
print("An error occurred while extracting TXT:", str(e))
return paragraphs
def predict(paragraphs):
predictions = []
for paragraph in paragraphs:
inputs = tokenizer(paragraph, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = F.softmax(logits, dim=1)
ai_probability = probabilities[0][1].item()
human_probability = probabilities[0][0].item()
predictions.append({
"ai_probability": ai_probability,
"human_probability": human_probability,
"text": paragraph
})
return predictions
def predict2(paragraph):
predictions = []
inputs = tokenizer(paragraph, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = F.softmax(logits, dim=1)
ai_probability = probabilities[0][1].item()
human_probability = probabilities[0][0].item()
predictions.append({
"ai_probability": ai_probability,
"human_probability": human_probability,
"text": paragraph
})
return predictions
@app.route('/upload', methods=['POST'])
def upload():
file_content = request.files['file']
# Convert the filename to lowercase for case-insensitive matching
filename = file_content.filename.lower()
if filename.endswith('.pdf'):
paragraphs = extractpdf(file_content)
predictions = predict(paragraphs)
elif filename.endswith(".docx"):
paragraphs = extractdocx(file_content)
predictions = predict(paragraphs)
elif filename.endswith(".png") or filename.endswith(".jpg"):
paragraphs = extractimage(file_content)
predictions = predict2(paragraphs)
elif filename.endswith(".txt"):
paragraphs = extracttxt(file_content)
predictions = predict(paragraphs)
else:
return render_template('index.html', error="Uploaded file must be a PDF, DOCX, PNG, JPG, or TXT.")
# Compute average probabilities
total_ai_probability = sum(prediction["ai_probability"] for prediction in predictions)
total_human_probability = sum(prediction["human_probability"] for prediction in predictions)
avg_ai_probability = total_ai_probability / len(predictions)
avg_human_probability = total_human_probability / len(predictions)
return render_template(
'index.html',
avg_ai_probability=avg_ai_probability,
avg_human_probability=avg_human_probability,
predictions=predictions
)
@app.route('/predict_text', methods=['POST'])
def textpredict():
text_input = request.form['text-input']
if text_input:
predictions = predict2(text_input)
# Compute average probabilities
total_ai_probability = sum(prediction["ai_probability"] for prediction in predictions)
total_human_probability = sum(prediction["human_probability"] for prediction in predictions)
avg_ai_probability = total_ai_probability / len(predictions)
avg_human_probability = total_human_probability / len(predictions)
return render_template(
'index.html',
avg_ai_probability=avg_ai_probability,
avg_human_probability=avg_human_probability,
predictions=predictions
)
else:
return render_template('index.html', error="No input")
app.static_folder = 'static'
if __name__ == '__main__':
app.run(debug=True,host="0.0.0.0",port=8080)