-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
106 lines (87 loc) · 3.88 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import pickle
from sklearn import model_selection
from bike_eda import Datahandler
from sklearn.linear_model import Lasso, Ridge
import os
import pandas as pd
import argparse
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
#class unitTest
class LinearRegressionModel():
def __init__(self, save_path):
self.model = RandomForestRegressor(random_state=0, n_estimators=100)
self.model_path = save_path
def get_metrics(self,test_x,test_y):
res_y = self.model.predict(test_x)
mse = mean_squared_error(test_y, res_y)
r2score = r2_score(test_y, res_y)
print("Mean Squared Error:{:.4f}".format(mse))
print("R Squared Error:{:.4f}".format(r2score))
def train(self, train_x, train_y):
self.model.fit(train_x, train_y)
def predict(self,test_x):
y_res = self.model.predict(test_x)
return y_res
def save(self):
pickle.dump(self.model, open(self.model_path, 'wb'))
def load(self):
pretrained =pickle.load(open(self.model_path, 'rb'))
return pretrained
def split_data(dataframe, split= True):
"""Given a dataframe, target and predictor variables, and a
list of attributes to dummify, returns training and test sets.
Args:
dataframe: input dataframe
Returns:
train and test sets
"""
# dummify attributes
dummy_attributes = ['season', 'mnth', 'hr', 'holiday', 'weekday', 'workingday', 'weathersit']
dummy_dataframe = dataframe
for attribute in dummy_attributes:
dummy_dataframe = pd.concat([dummy_dataframe, pd.get_dummies(dummy_dataframe[attribute], prefix=attribute, drop_first=True)], axis=1)
dummy_dataframe = dummy_dataframe.drop([attribute], axis =1)
target = dummy_dataframe['cnt']
predictor = dummy_dataframe.drop(['cnt'], axis=1)
if split == True:
X_train, X_test, y_train, y_test = train_test_split(predictor, target, test_size=0.33, random_state=42)
return X_train, X_test, y_train, y_test
else:
return predictor, target
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--datafile", help="path to data csv file", type=str)
parser.add_argument("--mode", help="train or predict", type=str)
parser.add_argument("--model_path", help= "path to/from where model will be saved/loaded", type=str)
#parser.add_argument("--metrics_path", help="path to/from where model metrics will \
#saved/loaded for unit-testing model",type=str,default=None)
args = parser.parse_args()
model_save_path = args.model_path
if not os.path.exists(model_save_path):
os.mkdir(model_save_path)
datafile = args.datafile
datahandler = Datahandler(datafile)
# list of attributes to drop
drop_attributes = ['atemp','dteday','casual','registered','yr','instant']
# Clean dataframe
bikeDF = datahandler.clean(attribute=drop_attributes)
if args.mode == 'train':
# get train and test sets
train_X, test_X, train_y, test_y = split_data(bikeDF)
# fit model
model = LinearRegressionModel(model_save_path)
model.train(train_X, train_y)
# evaluate model
model.get_metrics(test_X,test_y)
#TODO: add unit-test to check if model performance meets some performance benchmark and save the model if it does.
model.save()
elif args.mode == 'predict':
model = LinearRegressionModel(model_save_path)
pretrained_model = model.load()
bikeDFdata, bikeDFres = split_data(bikeDF, False)
res = pretrained_model.predict(bikeDFdata.sample(5))
print("***************************Predicted hourly count*******************************")
print(res)
print("********************************************************************************")