-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumpy_learn.py
87 lines (67 loc) · 1.51 KB
/
numpy_learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
numpy_learning.py
Usage:
python3 numpy_learn.py
'''
import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt
def pythonsum(n):
print('pythonsum',n)
a = list(range(n))
b = list(range(n))
c = []
for i in range(len(a)):
a[i] = i * i * i
b[i] = i * i
c.append(a[i] + b[i])
return c
def pythonsum2(n):
print('pythonsum',n)
a = list(range(n))
b = list(range(n))
c = []
for i in range(len(a)):
a[i] = i ** 3
b[i] = i ** 2
c.append(a[i] + b[i])
return c
def numpysum(n):
print('numpysum',n)
a = np.arange(n) ** 2
b = np.arange(n) ** 3
c = a + b
return c
def add_timedelta(func,n):
start = datetime.now()
c = func(n)
end = datetime.now()
delta = end-start
return c ,delta.microseconds
import sys
# size = int(sys.argv[1])
size =100
loops = []
times_python = []
times_numpy = []
for i in range(100,size,500):
loops.append(i)
c,time = add_timedelta(pythonsum,i)
times_python.append(time)
for i in range(100,size,500):
c,time = add_timedelta(numpysum,i)
times_numpy.append(time)
plt.plot(loops, times_numpy)
plt.plot(loops, times_python)
plt.legend('numpy' , 'python')
# plt.show()
import numpy as np
from random import randint
age_diff = [randint(-100,200) for i in range(400)]
indics = {}
for i in range(len(age_diff)):
lists = indics.get(i%5,[])
lists.append(age_diff[i])
indics[i%5] = lists