-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
372 lines (337 loc) · 14.9 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
'''
/*
* Copyright 1993-2007 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO USER:
*
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws. Users and possessors of this source code
* are hereby granted a nonexclusive, royalty-free license to use this code
* in individual and commercial software.
*
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
*
* U.S. Government End Users. This source code is a "commercial item" as
* that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
* "commercial computer software" and "commercial computer software
* documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
* source code with only those rights set forth herein.
*
* Any use of this source code in individual and commercial software must
* include, in the user documentation and internal comments to the code,
* the above Disclaimer and U.S. Government End Users Notice.
*/
/*
* This sample implements a separable convolution filter
* of a 2D signal with a gaussian kernel.
*/
Ported to pycuda by Andrew Wagner <[email protected]>, June 2009.
'''
import numpy
import pycuda.autoinit
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import string
# Pull out a bunch of stuff that was hard coded as pre-processor directives used
# by both the kernel and calling code.
KERNEL_RADIUS = 8
UNROLL_INNER_LOOP = True
KERNEL_W = 2 * KERNEL_RADIUS + 1
ROW_TILE_W = 128
KERNEL_RADIUS_ALIGNED = 16
COLUMN_TILE_W = 16
COLUMN_TILE_H = 48
template = '''
//24-bit multiplication is faster on G80,
//but we must be sure to multiply integers
//only within [-8M, 8M - 1] range
#define IMUL(a, b) __mul24(a, b)
////////////////////////////////////////////////////////////////////////////////
// Kernel configuration
////////////////////////////////////////////////////////////////////////////////
#define KERNEL_RADIUS $KERNEL_RADIUS
#define KERNEL_W $KERNEL_W
__device__ __constant__ float d_Kernel_rows[KERNEL_W];
__device__ __constant__ float d_Kernel_columns[KERNEL_W];
// Assuming ROW_TILE_W, KERNEL_RADIUS_ALIGNED and dataW
// are multiples of coalescing granularity size,
// all global memory operations are coalesced in convolutionRowGPU()
#define ROW_TILE_W $ROW_TILE_W
#define KERNEL_RADIUS_ALIGNED $KERNEL_RADIUS_ALIGNED
// Assuming COLUMN_TILE_W and dataW are multiples
// of coalescing granularity size, all global memory operations
// are coalesced in convolutionColumnGPU()
#define COLUMN_TILE_W $COLUMN_TILE_W
#define COLUMN_TILE_H $COLUMN_TILE_H
////////////////////////////////////////////////////////////////////////////////
// Row convolution filter
////////////////////////////////////////////////////////////////////////////////
__global__ void convolutionRowGPU(
float *d_Result,
float *d_Data,
int dataW,
int dataH
){
//Data cache
__shared__ float data[KERNEL_RADIUS + ROW_TILE_W + KERNEL_RADIUS];
//Current tile and apron limits, relative to row start
const int tileStart = IMUL(blockIdx.x, ROW_TILE_W);
const int tileEnd = tileStart + ROW_TILE_W - 1;
const int apronStart = tileStart - KERNEL_RADIUS;
const int apronEnd = tileEnd + KERNEL_RADIUS;
//Clamp tile and apron limits by image borders
const int tileEndClamped = min(tileEnd, dataW - 1);
const int apronStartClamped = max(apronStart, 0);
const int apronEndClamped = min(apronEnd, dataW - 1);
//Row start index in d_Data[]
const int rowStart = IMUL(blockIdx.y, dataW);
//Aligned apron start. Assuming dataW and ROW_TILE_W are multiples
//of half-warp size, rowStart + apronStartAligned is also a
//multiple of half-warp size, thus having proper alignment
//for coalesced d_Data[] read.
const int apronStartAligned = tileStart - KERNEL_RADIUS_ALIGNED;
const int loadPos = apronStartAligned + threadIdx.x;
//Set the entire data cache contents
//Load global memory values, if indices are within the image borders,
//or initialize with zeroes otherwise
if(loadPos >= apronStart){
const int smemPos = loadPos - apronStart;
data[smemPos] =
((loadPos >= apronStartClamped) && (loadPos <= apronEndClamped)) ?
d_Data[rowStart + loadPos] : 0;
}
//Ensure the completness of the loading stage
//because results, emitted by each thread depend on the data,
//loaded by another threads
__syncthreads();
const int writePos = tileStart + threadIdx.x;
//Assuming dataW and ROW_TILE_W are multiples of half-warp size,
//rowStart + tileStart is also a multiple of half-warp size,
//thus having proper alignment for coalesced d_Result[] write.
if(writePos <= tileEndClamped){
const int smemPos = writePos - apronStart;
float sum = 0;
'''
originalLoop = '''
for(int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++)
sum += data[smemPos + k] * d_Kernel_rows[KERNEL_RADIUS - k];
'''
unrolledLoop = ''
for k in range(-KERNEL_RADIUS, KERNEL_RADIUS+1):
loopTemplate = string.Template(
'sum += data[smemPos + $k] * d_Kernel_rows[KERNEL_RADIUS - $k];\n')
unrolledLoop += loopTemplate.substitute(k=k)
#print unrolledLoop
template += unrolledLoop if UNROLL_INNER_LOOP else originalLoop
template += '''
d_Result[rowStart + writePos] = sum;
//d_Result[rowStart + writePos] = 128;
}
}
////////////////////////////////////////////////////////////////////////////////
// Column convolution filter
////////////////////////////////////////////////////////////////////////////////
__global__ void convolutionColumnGPU(
float *d_Result,
float *d_Data,
int dataW,
int dataH,
int smemStride,
int gmemStride
){
//Data cache
__shared__ float data[COLUMN_TILE_W *
(KERNEL_RADIUS + COLUMN_TILE_H + KERNEL_RADIUS)];
//Current tile and apron limits, in rows
const int tileStart = IMUL(blockIdx.y, COLUMN_TILE_H);
const int tileEnd = tileStart + COLUMN_TILE_H - 1;
const int apronStart = tileStart - KERNEL_RADIUS;
const int apronEnd = tileEnd + KERNEL_RADIUS;
//Clamp tile and apron limits by image borders
const int tileEndClamped = min(tileEnd, dataH - 1);
const int apronStartClamped = max(apronStart, 0);
const int apronEndClamped = min(apronEnd, dataH - 1);
//Current column index
const int columnStart = IMUL(blockIdx.x, COLUMN_TILE_W) + threadIdx.x;
//Shared and global memory indices for current column
int smemPos = IMUL(threadIdx.y, COLUMN_TILE_W) + threadIdx.x;
int gmemPos = IMUL(apronStart + threadIdx.y, dataW) + columnStart;
//Cycle through the entire data cache
//Load global memory values, if indices are within the image borders,
//or initialize with zero otherwise
for(int y = apronStart + threadIdx.y; y <= apronEnd; y += blockDim.y){
data[smemPos] =
((y >= apronStartClamped) && (y <= apronEndClamped)) ?
d_Data[gmemPos] : 0;
smemPos += smemStride;
gmemPos += gmemStride;
}
//Ensure the completness of the loading stage
//because results, emitted by each thread depend on the data,
//loaded by another threads
__syncthreads();
//Shared and global memory indices for current column
smemPos = IMUL(threadIdx.y + KERNEL_RADIUS, COLUMN_TILE_W) + threadIdx.x;
gmemPos = IMUL(tileStart + threadIdx.y , dataW) + columnStart;
//Cycle through the tile body, clamped by image borders
//Calculate and output the results
for(int y = tileStart + threadIdx.y; y <= tileEndClamped; y += blockDim.y){
float sum = 0;
'''
originalLoop = '''
for(int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++)
sum += data[smemPos + IMUL(k, COLUMN_TILE_W)] *
d_Kernel_columns[KERNEL_RADIUS - k];
'''
unrolledLoop = ''
for k in range(-KERNEL_RADIUS, KERNEL_RADIUS+1):
loopTemplate = string.Template('sum += data[smemPos + IMUL($k, COLUMN_TILE_W)] * d_Kernel_columns[KERNEL_RADIUS - $k];\n')
unrolledLoop += loopTemplate.substitute(k=k)
#print unrolledLoop
template += unrolledLoop if UNROLL_INNER_LOOP else originalLoop
template += '''
d_Result[gmemPos] = sum;
//d_Result[gmemPos] = 128;
smemPos += smemStride;
gmemPos += gmemStride;
}
}
'''
template = string.Template(template)
code = template.substitute(KERNEL_RADIUS = KERNEL_RADIUS,
KERNEL_W = KERNEL_W,
COLUMN_TILE_H=COLUMN_TILE_H,
COLUMN_TILE_W=COLUMN_TILE_W,
ROW_TILE_W=ROW_TILE_W,
KERNEL_RADIUS_ALIGNED=KERNEL_RADIUS_ALIGNED)
module = SourceModule(code)
convolutionRowGPU = module.get_function('convolutionRowGPU')
convolutionColumnGPU = module.get_function('convolutionColumnGPU')
d_Kernel_rows = module.get_global('d_Kernel_rows')[0]
d_Kernel_columns = module.get_global('d_Kernel_columns')[0]
# Helper functions for computing alignment...
def iDivUp(a, b):
# Round a / b to nearest higher integer value
a = numpy.int32(a)
b = numpy.int32(b)
return (a / b + 1) if (a % b != 0) else (a / b)
def iDivDown(a, b):
# Round a / b to nearest lower integer value
a = numpy.int32(a)
b = numpy.int32(b)
return a / b;
def iAlignUp(a, b):
# Align a to nearest higher multiple of b
a = numpy.int32(a)
b = numpy.int32(b)
return (a - a % b + b) if (a % b != 0) else a
def iAlignDown(a, b):
# Align a to nearest lower multiple of b
a = numpy.int32(a)
b = numpy.int32(b)
return a - a % b
def gaussian_kernel(width = KERNEL_W, sigma = 4.0):
assert width == numpy.floor(width), 'argument width should be an integer!'
radius = (width - 1)/2.0
x = numpy.linspace(-radius, radius, width)
x = numpy.float32(x)
sigma = numpy.float32(sigma)
filterx = x*x / (2 * sigma * sigma)
filterx = numpy.exp(-1 * filterx)
assert filterx.sum()>0, 'something very wrong if gaussian kernel sums to zero!'
filterx /= filterx.sum()
return filterx
def derivative_of_gaussian_kernel(width = KERNEL_W, sigma = 4):
assert width == numpy.floor(width), 'argument width should be an integer!'
radius = (width - 1)/2.0
x = numpy.linspace(-radius, radius, width)
x = numpy.float32(x)
# The derivative of a gaussian is really just a gaussian times x, up to scale.
filterx = gaussian_kernel(width, sigma)
filterx *= x
# Rescale so that filter returns derivative of 1 when applied to x:
scale = (x * filterx).sum()
filterx /= scale
# Careful with sign; this will be uses as a ~convolution kernel, so should start positive, then go negative.
filterx *= -1.0
return filterx
def test_derivative_of_gaussian_kernel():
width = 20
sigma = 10.0
filterx = derivative_of_gaussian_kernel(width, sigma)
x = 2 * numpy.arange(0, width)
x = numpy.float32(x)
response = (filter * x).sum()
assert abs(response - (-2.0)) < .0001, 'derivative of gaussian failed scale test!'
width = 19
sigma = 10.0
filterx = derivative_of_gaussian_kernel(width, sigma)
x = 2 * numpy.arange(0, width)
x = numpy.float32(x)
response = (filterx * x).sum()
assert abs(response - (-2.0)) < .0001, 'derivative of gaussian failed scale test!'
def convolution_cuda(sourceImage, filterx, filtery):
# Perform separable convolution on sourceImage using CUDA.
# Operates on floating point images with row-major storage.
destImage = sourceImage.copy()
assert sourceImage.dtype == 'float32', 'source image must be float32'
(imageHeight, imageWidth) = sourceImage.shape
assert filterx.shape == filtery.shape == (KERNEL_W, ) , 'Kernel is compiled for a different kernel size! Try changing KERNEL_W'
filterx = numpy.float32(filterx)
filtery = numpy.float32(filtery)
DATA_W = iAlignUp(imageWidth, 16);
DATA_H = imageHeight;
BYTES_PER_WORD = 4; # 4 for float32
DATA_SIZE = DATA_W * DATA_H * BYTES_PER_WORD;
KERNEL_SIZE = KERNEL_W * BYTES_PER_WORD;
# Prepare device arrays
destImage_gpu = cuda.mem_alloc_like(destImage)
sourceImage_gpu = cuda.mem_alloc_like(sourceImage)
intermediateImage_gpu = cuda.mem_alloc_like(sourceImage)
cuda.memcpy_htod(sourceImage_gpu, sourceImage)
cuda.memcpy_htod(d_Kernel_rows, filterx) # The kernel goes into constant memory via a symbol defined in the kernel
cuda.memcpy_htod(d_Kernel_columns, filtery)
# Call the kernels for convolution in each direction.
blockGridRows = (iDivUp(DATA_W, ROW_TILE_W), DATA_H)
blockGridColumns = (iDivUp(DATA_W, COLUMN_TILE_W), iDivUp(DATA_H, COLUMN_TILE_H))
threadBlockRows = (KERNEL_RADIUS_ALIGNED + ROW_TILE_W + KERNEL_RADIUS, 1, 1)
threadBlockColumns = (COLUMN_TILE_W, 8, 1)
DATA_H = numpy.int32(DATA_H)
DATA_W = numpy.int32(DATA_W)
grid_rows = tuple([int(e) for e in blockGridRows])
block_rows = tuple([int(e) for e in threadBlockRows])
grid_cols = tuple([int(e) for e in blockGridColumns])
block_cols = tuple([int(e) for e in threadBlockColumns])
convolutionRowGPU(intermediateImage_gpu, sourceImage_gpu, DATA_W, DATA_H, grid=grid_rows, block=block_rows)
convolutionColumnGPU(destImage_gpu, intermediateImage_gpu, DATA_W, DATA_H, numpy.int32(COLUMN_TILE_W * threadBlockColumns[1]), numpy.int32(DATA_W * threadBlockColumns[1]), grid=grid_cols, block=block_cols)
# Pull the data back from the GPU.
cuda.memcpy_dtoh(destImage, destImage_gpu)
return destImage
def test_convolution_cuda():
# Test the convolution kernel.
# Generate or load a test image
original = numpy.random.rand(768, 1024) * 255
original = numpy.float32(original)
# You probably want to display the image using the tool of your choice here.
filterx = gaussian_kernel()
destImage = original.copy()
destImage[:] = numpy.nan
destImage = convolution_cuda(original, filterx, filterx)
# You probably wand to display the result image using the tool of your choice here.
print('Done running the convolution kernel!')
if __name__ == '__main__':
test_convolution_cuda()
# #test_derivative_of_gaussian_kernel()
# boo = raw_input('Pausing so you can look at results... <Enter> to finish...')