-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
188 lines (154 loc) · 5.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import time
import numpy as np
import torch
import cv2
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
'''Early Stopping'''
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt', trace_func=print):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
path (str): Path for the checkpoint to be saved to.
Default: 'checkpoint.pt'
trace_func (function): trace print function.
Default: print
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.path = path
self.trace_func = trace_func
def __call__(self, val_loss, model):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model)
elif score < self.best_score + self.delta:
self.counter += 1
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model)
self.counter = 0
def save_checkpoint(self, val_loss, model):
'''Saves model when validation loss decrease.'''
if self.verbose:
self.trace_func(
f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), self.path)
self.val_loss_min = val_loss
def make_optimizer(args, network):
trainable = filter(lambda x: x.requires_grad, network.parameters())
if args.optimizer == 'SGD':
optimizer_function = optim.SGD
kwargs = {'momentum': args.momentum}
elif args.optimizer == 'ADAM':
optimizer_function = optim.Adam
kwargs = {
'betas': (args.beta1, args.beta2),
'eps': args.epsilon
}
elif args.optimizer == 'RMSprop':
optimizer_function = optim.RMSprop
kwargs = {'eps': args.epsilon}
kwargs['lr'] = args.lr
kwargs['weight_decay'] = args.weight_decay
return optimizer_function(trainable, **kwargs)
def make_scheduler(args, optimizer):
lambda1 = lambda epoch: (1 - epoch/args.epochs)**0.9
scheduler = lrs.LambdaLR(optimizer, lr_lambda=lambda1, last_epoch=-1)
return scheduler
class Adder(object):
def __init__(self):
self.count = 0
self.num = float(0)
def reset(self):
self.count = 0
self.num = float(0)
def __call__(self, num):
self.count += 1
self.num += num
def average(self):
return self.num / self.count
class Timer(object):
def __init__(self, option='s'):
self.tm = 0
self.option = option
if option == 's':
self.devider = 1
elif option == 'm':
self.devider = 60
else:
self.devider = 3600
def tic(self):
self.tm = time.time()
def toc(self):
return (time.time() - self.tm) / self.devider
def check_lr(optimizer):
for i, param_group in enumerate(optimizer.param_groups):
lr = param_group['lr']
return lr
def get_miou(preds, gt): #计算miou
miou = 0
pre_pic = torch.argmax(preds,1)
batch, width, height = pre_pic.shape
for i in range(batch):
predict = pre_pic[i]
mask = gt[i]
union = torch.logical_or(predict,mask).sum()
inter = ((predict + mask)==2).sum()
if union < 1e-5:
return 0
miou += inter / union
return miou/batch
def get_boundary(pic,is_mask):
if not is_mask:
pic = torch.argmax(pic,1).cpu().numpy().astype('float64')
else:
pic = pic.cpu().numpy()
batch, width, height = pic.shape
new_pic = np.zeros([batch, width + 2, height + 2])
mask_erode = np.zeros([batch, width, height])
dil = int(round(0.02*np.sqrt(width ** 2 + height ** 2)))
if dil < 1:
dil = 1
for i in range(batch):
new_pic[i] = cv2.copyMakeBorder(pic[i], 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0)
kernel = np.ones((3, 3), dtype=np.uint8)
for j in range(batch):
pic_erode = cv2.erode(new_pic[j],kernel,iterations=dil)
mask_erode[j] = pic_erode[1: width + 1, 1: height + 1]
return torch.from_numpy(pic-mask_erode)
def get_biou(preds, gt):
inter = 0
union = 0
pre_pic = get_boundary(preds, is_mask=False)
real_pic = get_boundary(gt, is_mask=True)
batch, width, height = pre_pic.shape
for i in range(batch):
predict = pre_pic[i]
mask = real_pic[i]
inter += ((predict * mask) > 0).sum()
union += ((predict + mask) > 0).sum()
if union < 1:
return 0
biou = (inter/union)
return biou
def check_lr(optimizer):
for i, param_group in enumerate(optimizer.param_groups):
lr = param_group['lr']
return lr