-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoption.py
79 lines (66 loc) · 3.33 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import argparse
parser = argparse.ArgumentParser(description='DenseASPP')
parser.add_argument('--use_gpu', default=True, help='whether to use gpu')
parser.add_argument('--device', action='store_true', help='cpu or gpu')
parser.add_argument('--resume', type=str, default='')
parser.add_argument('--pretrained', default=True, help='whether to use pretrained model')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--phase', default='train',
choices=('train', 'eval'),
help='mode (train | eval)')
# Data specifications
parser.add_argument('--root', type=str, default='./weizmann_horse_db',
help='dataset directory')
parser.add_argument('--train_list', type=str, default='./dataset/train_list.txt',
help='dataset directory')
parser.add_argument('--test_list', type=str, default='./dataset/test_list.txt',
help='dataset directory')
parser.add_argument('--workers', type=int, default=8,
help='num_workers for batch loader')
# Model specifications
parser.add_argument('--backbone', type=str, default='Densenet121',
choices=('Denset169', 'Densenet121'),
help='feature extractor')
parser.add_argument('--num_class', type=int, default=2,
help='number of classes')
# Training specifications
parser.add_argument('--epochs', type=int, default=50,
help='number of epochs to train')
parser.add_argument('--save_freq', type=int, default=1,
help='frequency of saving the model')
parser.add_argument('--batch_size', type=int, default=1,
help='input batch size for training')
# Optimization specifications
parser.add_argument('--lr', type=float, default=3e-4,
help='learning rate')
parser.add_argument('--optimizer', default='ADAM',
choices=('SGD', 'ADAM', 'RMSprop'),
help='optimizer to use (SGD | ADAM | RMSprop)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum')
parser.add_argument('--beta1', type=float, default=0.9,
help='ADAM beta1')
parser.add_argument('--beta2', type=float, default=0.999,
help='ADAM beta2')
parser.add_argument('--epsilon', type=float, default=1e-8,
help='ADAM epsilon for numerical stability')
parser.add_argument('--weight_decay', type=float, default=1e-5,
help='weight decay')
parser.add_argument('--scheduler_patience', type=float, default=6,
help='patience of scheduler')
# Log specifications
parser.add_argument('--save', type=str, default='test',
help='file name to save')
parser.add_argument('--load', type=str, default='./pretrained/denseasppp.pkl',
help='file name to load')
parser.add_argument('--model_save_dir', type=str, default='./results/models/',
help='path of saved models')
args = parser.parse_args()
if args.use_gpu:
args.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
print('use_gpu')
else:
args.device = torch.device('cpu')
print('use_cpu')