-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_bias_phishing.py
224 lines (207 loc) · 8.48 KB
/
run_bias_phishing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from utils.data_utils import load_data_cross_validation, load_data_train_test
from model.fl_model import VerticalFLModel
from model.single_party_model import SingleParty
from model.split_nn_model import SplitNNModel
from model.models import FC
from torch.utils.tensorboard import SummaryWriter
from sklearn.inspection import permutation_importance
from joblib import Parallel, delayed
import torch
import os.path
import wget
import bz2
import shutil
import zipfile
import numpy as np
import xgboost as xgb
from sklearn.metrics import accuracy_score, f1_score, mean_squared_error
import matplotlib.pyplot as plt
if not os.path.isdir("data"):
os.mkdir("data")
if not os.path.isfile("data/phishing"):
print("Downloading phishing data")
wget.download("https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/phishing",
"data/phishing")
# load data
xs_train, y_train, xs_test, y_test, x_train, x_test = load_data_train_test("phishing", num_parties=1,
test_size=0.2, file_type='libsvm')
# calculate XGBoost feature importance
print("Starts training XGBoost on phishing")
xg_cls = xgb.XGBClassifier(objective='binary:logistic',
learning_rate=0.1,
max_depth=6,
n_estimators=100,
reg_alpha=10,
verbosity=2)
xg_cls.fit(x_train, y_train, eval_set=[(x_train, y_train), (x_test, y_test)], eval_metric='error')
y_pred = xg_cls.predict(x_test)
acc = accuracy_score(y_test, y_pred)
importance = xg_cls.feature_importances_
print("Finished training. Overall accuracy {}".format(acc))
# save feature importance
np.savetxt("cache/feature_importance_phishing.txt", importance)
# load importance from file
importance = np.loadtxt("cache/feature_importance_phishing.txt")
# FedOnce
def run_vertical_fl(beta):
num_parties = 2
cross_valid_data = load_data_cross_validation("phishing", num_parties=num_parties,
file_type='libsvm', n_fold=5, feature_order=np.argsort(importance),
num_good_features=30, good_feature_ratio_alpha=beta)
active_party = 0
print("Active party {} starts training".format(active_party))
score_list = []
for i, (xs_train, y_train, xs_test, y_test) in enumerate(cross_valid_data):
print("Cross Validation Fold {}".format(i))
print("Active Party is {}".format(active_party))
model_name = "vertical_fl_phishing_party_{}_fold_{}_beta_{:.1f}".format(num_parties, i, beta)
name = "{}_active_{}".format(model_name, active_party)
writer = SummaryWriter("runs/{}".format(name))
aggregate_model = VerticalFLModel(
num_parties=num_parties,
active_party_id=active_party,
name=model_name,
num_epochs=100,
num_local_rounds=100,
local_lr=3e-4,
local_hidden_layers=[50, 30],
local_batch_size=100,
local_weight_decay=1e-5,
local_output_size=3,
num_agg_rounds=1,
agg_lr=1e-4,
agg_hidden_layers=[10],
agg_batch_size=100,
agg_weight_decay=1e-4,
writer=writer,
device='cuda:0',
update_target_freq=1,
task='binary_classification',
n_classes=10,
test_batch_size=1000,
test_freq=1,
cuda_parallel=False,
n_channels=1,
model_type='fc',
optimizer='adam',
privacy=None,
batches_per_lot=5,
epsilon=1,
delta=1.0/xs_train[0].shape[0]
)
acc, _, _, _ = aggregate_model.train(xs_train, y_train, xs_test, y_test, use_cache=False)
print("Active party {} finished training.".format(active_party))
score_list.append(acc)
print(aggregate_model.params)
print("Accuracy for active party {}".format(active_party) + str(score_list))
mean = np.mean(score_list)
std = np.std(score_list)
out = "Party {}, beta {:.1f}: Accuracy mean={}, std={}".format(active_party, beta, mean, std)
print(out)
return mean, std
betas = np.arange(0.0, 1.1, 0.1)
results = Parallel(n_jobs=6)(delayed(run_vertical_fl)(beta) for beta in betas)
print("-------------------------------------------------")
for beta, (mean, std) in zip(betas, results):
print("Party {}, beta {:.1f}: Accuracy mean={}, std={}".format(0, beta, mean, std))
# Solo
def run_single(beta):
num_parties = 2
cross_valid_data = load_data_cross_validation("phishing", num_parties=num_parties,
file_type='libsvm', n_fold=5, feature_order=np.argsort(importance),
num_good_features=30, good_feature_ratio_alpha=beta)
party_id = 0
print("Party {} starts training".format(party_id))
score_list = []
for i, (xs_train, y_train, xs_test, y_test) in enumerate(cross_valid_data):
print("Cross Validation Fold {}".format(i))
name = "single_phishing_party_{}_single_{}_fold_{}_beta_{:.1f}".format(num_parties, party_id, i, beta)
writer = SummaryWriter("runs/{}".format(name))
single_model = SingleParty(
party_id=party_id,
num_epochs=100,
lr=1e-4,
hidden_layers=[50, 30],
batch_size=100,
weight_decay=1e-4,
writer=writer,
device='cuda:1',
task="binary_classification",
n_classes=10,
test_batch_size=1000,
test_freq=1,
n_channels=1,
model_type='fc',
optimizer='adam',
cuda_parallel=False
)
x_train = xs_train[party_id]
x_test = xs_test[party_id]
acc, _, _, _ = single_model.train(x_train, y_train, x_test, y_test)
score_list.append(acc)
print(single_model.params)
print("Accuracy for party {}".format(party_id) + str(score_list))
mean = np.mean(score_list)
std = np.std(score_list)
_out = "Party {}, beta {}: Acc mean={}, std={}".format(party_id, beta, mean, std)
print(_out)
return mean, std
betas = np.arange(0.0, 1.1, 0.1)
results = Parallel(n_jobs=11)(delayed(run_single)(beta) for beta in betas)
print("-------------------------------------------------")
for beta, (mean, std) in zip(betas, results):
print("Party {}, beta {:.1f}: Accuracy mean={}, std={}".format(0, beta, mean, std))
#
# combine
num_parties = 1
cross_valid_data = load_data_cross_validation("phishing", num_parties=num_parties,
file_type='libsvm', n_fold=5)
f1_summary = []
acc_summary = []
for party_id in range(num_parties):
print("Party {} starts training".format(party_id))
acc_list = []
f1_list = []
for i, (xs_train, y_train, xs_test, y_test) in enumerate(cross_valid_data):
print("Cross Validation Fold {}".format(i))
name = "combine_phishing_fold_{}".format(i)
writer = SummaryWriter("runs/{}".format(name))
single_model = SingleParty(
party_id=party_id,
num_epochs=100,
lr=1e-4,
hidden_layers=[100, 50],
batch_size=100,
weight_decay=1e-4,
writer=writer,
device='cuda:0',
task="binary_classification",
n_classes=10,
test_batch_size=1000,
test_freq=1,
n_channels=1,
model_type='fc',
optimizer='adam',
cuda_parallel=False
)
x_train = xs_train[party_id]
x_test = xs_test[party_id]
acc, f1, _ = single_model.train(x_train, y_train, x_test, y_test)
acc_list.append(acc)
f1_list.append(f1)
print(single_model.params)
f1_summary.append(f1_list)
acc_summary.append(acc_list)
print("Accuracy for party {}".format(party_id) + str(acc_list))
print("F1 score for party {}".format(party_id, str(f1_list)))
print("-------------------------------------------------")
print("Accuracy summary: " + repr(acc_summary))
print("F1 score summary: " + repr(f1_summary))
for i, result in enumerate(acc_summary):
mean = np.mean(result)
std = np.std(result)
print("Party {}: Accuracy mean={}, std={}".format(i, mean, std))
for i, result in enumerate(acc_summary):
mean = np.mean(result)
std = np.std(result)
print("Party {}: F1-score mean={}, std={}".format(i, mean, std))