diff --git a/Polarization_Imbalance.nb b/Polarization_Imbalance.nb new file mode 100644 index 0000000..91e18ba --- /dev/null +++ b/Polarization_Imbalance.nb @@ -0,0 +1,1888 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 11.1' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 78477, 1880] +NotebookOptionsPosition[ 76347, 1817] +NotebookOutlinePosition[ 76704, 1833] +CellTagsIndexPosition[ 76661, 1830] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ + +Cell[CellGroupData[{ +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", + RowBox[{"Thermaldynamical", " ", "Potential"}], "*)"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"ClearAll", "[", "\"\\"", "]"}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"t", "=", "1"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"r", "=", "0.5"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[Epsilon]", "[", "k_", "]"}], ":=", + RowBox[{"k", "^", "2"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[Epsilon]n", "[", + RowBox[{"k_", ",", "r_"}], "]"}], ":=", + RowBox[{ + RowBox[{"\[Epsilon]", "[", "k", "]"}], "*", + RowBox[{ + RowBox[{"(", + RowBox[{"r", "-", "1"}], ")"}], "/", + RowBox[{"(", + RowBox[{"r", "+", "1"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[Xi]", "[", + RowBox[{"k_", ",", "\[Mu]_"}], "]"}], ":=", + RowBox[{ + RowBox[{"\[Epsilon]", "[", "k", "]"}], "-", "\[Mu]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"Ek", "[", + RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_"}], "]"}], ":=", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{ + RowBox[{"\[Xi]", "[", + RowBox[{"k", ",", "\[Mu]"}], "]"}], "^", "2"}], "+", + RowBox[{"\[CapitalDelta]", "^", "2"}]}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"E1", "[", + RowBox[{ + "k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_"}], + "]"}], ":=", + RowBox[{ + RowBox[{"Ek", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "-", + RowBox[{"(", + RowBox[{"h", "-", + RowBox[{"\[Epsilon]n", "[", + RowBox[{"k", ",", "r"}], "]"}]}], ")"}]}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"E2", "[", + RowBox[{ + "k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_"}], + "]"}], ":=", + RowBox[{ + RowBox[{"Ek", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "+", + RowBox[{"(", + RowBox[{"h", "-", + RowBox[{"\[Epsilon]n", "[", + RowBox[{"k", ",", "r"}], "]"}]}], ")"}]}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"T1", "[", + RowBox[{ + "k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_"}], + "]"}], ":=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"E1", "[", + RowBox[{ + "k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}], + "]"}], "<", "0"}], ",", "1", ",", "0"}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"T2", "[", + RowBox[{ + "k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_"}], + "]"}], ":=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"E2", "[", + RowBox[{ + "k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}], + "]"}], "<", "0"}], ",", "1", ",", "0"}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalOmega]0", "[", + RowBox[{"\[Mu]_", ",", "\[CapitalDelta]_"}], "]"}], ":=", + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalDelta]", "^", "2"}], "/", "2"}], "+", + RowBox[{ + RowBox[{"k", "^", "2"}], + RowBox[{"\[Xi]", "[", + RowBox[{"k", ",", "\[Mu]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"k", "^", "2"}], " ", + RowBox[{"Ek", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", "0", ",", "10"}], "}"}]}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalOmega]1", "[", + RowBox[{"\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_"}], + "]"}], ":=", + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{"k", "^", "2"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"E1", "[", + RowBox[{ + "k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}], + "]"}], "*", + RowBox[{"T1", "[", + RowBox[{ + "k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}], + "]"}]}], "+", + RowBox[{ + RowBox[{"E2", "[", + RowBox[{ + "k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}], + "]"}], "*", + RowBox[{"T2", "[", + RowBox[{ + "k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}], + "]"}]}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalOmega]", "[", + RowBox[{ + "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_", ",", "r_", ",", "t_"}], + "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"\[CapitalDelta]", "^", "2"}]}], " ", + RowBox[{"t", "/", + RowBox[{"(", + RowBox[{"8", " ", "Pi"}], ")"}]}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"2", " ", + RowBox[{"Pi", "^", "2"}]}], ")"}]}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"\[CapitalOmega]0", "[", + RowBox[{"\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "+", + RowBox[{"\[CapitalOmega]1", "[", + RowBox[{"\[Mu]", ",", "\[CapitalDelta]", ",", "h", ",", "r"}], + "]"}]}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Mu]0", "=", "1"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"h0", "=", "1.44"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"tt", "=", + RowBox[{ + RowBox[{"TextString", "[", "t", "]"}], "//", "InputForm"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"\[CapitalOmega]", "[", + RowBox[{ + "\[Mu]0", ",", "\[CapitalDelta]", ",", "h0", ",", "t", ",", "r"}], + "]"}], ",", + RowBox[{"{", + RowBox[{"\[CapitalDelta]", ",", "0", ",", "5"}], "}"}], ",", + RowBox[{"AxesLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + "\"\<\[CapitalDelta]/\!\(\*SubscriptBox[\(\[Epsilon]\), \(F\)]\)\>\"", + ",", "\"\<\[CapitalOmega]/\!\(\*SubscriptBox[\(\[Epsilon]\), \(F\)]\)\ +\>\""}], "}"}]}]}], "]"}]}]}]], "Input", + CellChangeTimes->{ + 3.7269542414870167`*^9, 3.726954289761394*^9, 3.7269543545817623`*^9, { + 3.726954415685233*^9, 3.726954427577857*^9}, {3.7269544783508673`*^9, + 3.726954489760225*^9}, {3.7269545336840067`*^9, 3.7269546377176313`*^9}, { + 3.7269547451533394`*^9, 3.7269547520998187`*^9}, {3.7269603754580097`*^9, + 3.726960404560393*^9}, {3.726960745426305*^9, 3.726960795891465*^9}, { + 3.7269608322260823`*^9, 3.7269609055480623`*^9}, {3.726960954765932*^9, + 3.726961018087312*^9}, {3.726965796497113*^9, 3.7269658043890924`*^9}, { + 3.726965856073502*^9, 3.726965864749608*^9}, 3.726965912904624*^9, { + 3.7269659603517914`*^9, 3.726965985667118*^9}, {3.726966034177102*^9, + 3.7269660581298366`*^9}, {3.726966139180359*^9, 3.7269661592306366`*^9}, { + 3.726966220732222*^9, 3.726966260039734*^9}, {3.7269662938696594`*^9, + 3.7269663108378143`*^9}, {3.726966506106024*^9, 3.7269665097056336`*^9}, + 3.7269665413266935`*^9, {3.726966597439905*^9, 3.726966597741727*^9}, { + 3.726967008284273*^9, 3.726967044554946*^9}, {3.726979424199822*^9, + 3.7269794495030727`*^9}, {3.726979486045155*^9, 3.726979523715437*^9}, { + 3.726979593600555*^9, 3.726979613095695*^9}, {3.726979740586712*^9, + 3.726979756688603*^9}, {3.726980314489049*^9, 3.726980314575759*^9}, + 3.726980349127324*^9, 3.726980398893853*^9, 3.726980436075838*^9, { + 3.726980570749852*^9, 3.7269806347701807`*^9}, 3.72698066712217*^9, + 3.726981020091819*^9, {3.726981099001816*^9, 3.726981219873877*^9}, { + 3.726981272890937*^9, 3.726981276534831*^9}, {3.726981337588417*^9, + 3.726981348051647*^9}, 3.7269814535357533`*^9, 3.726981506797289*^9, { + 3.726981544972315*^9, 3.7269815725146017`*^9}, {3.7269816068251553`*^9, + 3.726981623784423*^9}, {3.726981666359192*^9, 3.726981724020347*^9}, { + 3.726981754467044*^9, 3.7269818529998207`*^9}, {3.7269818857819433`*^9, + 3.726981994873156*^9}, 3.726982033344253*^9, {3.726982074845752*^9, + 3.726982075293564*^9}, {3.726982232656658*^9, 3.72698225325461*^9}, { + 3.7269831192840767`*^9, 3.726983151529418*^9}, 3.726983189752062*^9, { + 3.7269832318303623`*^9, 3.7269832321898212`*^9}, {3.7269834508931713`*^9, + 3.726983468732081*^9}, {3.7269835002431297`*^9, 3.72698352188993*^9}, { + 3.726983595127552*^9, 3.726983623261921*^9}, {3.7269838574047327`*^9, + 3.7269838607762623`*^9}, {3.726984054553896*^9, 3.7269841801035*^9}, { + 3.7269842237502003`*^9, 3.7269842570088587`*^9}, {3.726984294883563*^9, + 3.726984296867299*^9}, {3.726984344297522*^9, 3.726984358192872*^9}, { + 3.727038869081274*^9, 3.727038925660977*^9}}, + ExpressionUUID -> "b265d892-af2f-4fc3-80c1-192703723200"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "ncvb"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"NIntegrate failed to converge to prescribed accuracy after \ +\[NoBreak]\\!\\(9\\)\[NoBreak] recursive bisections in \[NoBreak]\\!\\(k\\)\ +\[NoBreak] near \[NoBreak]\\!\\({k}\\)\[NoBreak] = \ +\[NoBreak]\\!\\({1.015469583594676`}\\)\[NoBreak]. NIntegrate obtained \ +\[NoBreak]\\!\\(-0.2666668691499098`\\)\[NoBreak] and \ +\[NoBreak]\\!\\(3.011310941154041`*^-6\\)\[NoBreak] for the integral and \ +error estimates. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\ +\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/NIntegrate/ncvb\\\", ButtonNote -> \ +\\\"NIntegrate::ncvb\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{ + 3.7269842983843737`*^9, 3.726984358427223*^9, {3.727038869722443*^9, + 3.727038925879382*^9}}], + +Cell[BoxData[ + GraphicsBox[{{}, {}, + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwd13k8lF8XAPDZjJSEoVQUJWmTrVLJvRWSIrQhyb5GJSWSLdmlUEoIISUM +84wsw80SUbZIikoUsmWbIet7f+9fPt/Pecw95z73nDsjY3XJyJZCIpHSyCTS +f38TfazoSjY3Nbgp37cZEByUZDq076y0CdhgwhbQwf6iF+YmLe0Ics02fVPG +Vt7T+GxpuxuoWrJ0jSi2xxETIT5pT6CUI3W3l8VBnLM9NxbtfYHXyfONTGwy +UTA29zkA3D2QYHgFW5YzKzczeweA9C43eWztKmg2tT4UZAXaBrTlc5DDhzv3 +Jw9HgGUgv+omdnhrXfWYfRRoHd5+XQL77Ai/z5TWfXD23qcPr/Lw824vJXif +o0GEov8/NWxP3nHWpGMsgDEf5UuZHBTm9VdvYvYBMOLG396LnR2gent0/WNg +elLYcG0uB5XRP0v9zYsHQuJ6S/xzOKgpzLNw+HACsNGSdP+RzUHj0WXDA/ZP +AePd8LegVxwUEK5YNemdDFKlm0WasvDn1/uLTGqlgIHoIjtR7ARD2Vfjn1PB +F9ui5oAXHJQWc+3fWPIzcMrdUCwvE6//qVp7zDENFHp5NLQ/x+ubOP78O5sO +zk6K8YtncNBPy5yVw+tfAJfLr90PpXLQwLNF66H+F6DO/nuMRgrO57dB3mDe +S2Cc7RarmsxBNKeJYwOHX4GMmO/mK5I4SM5Nzb/PPhcwTR+G+z7moN0Hf3JH +P+eDIEOl9jNRHLSvOzThsjoLXCj40PgvkoM0bisfHk1mgemqvMdxERx05O3t +e38dCTD2gNZYGcpBxkflto3MsoFOjEXdj9scdNPQ2WJwfRHQnLu0WcGDgxZu +7179I6IIaBf+DTO/xkF+BeSPH/8VAZG+noDQqxwUuPbR4eKWYuDc9/ps4yUO +uvu7Si40mAOuKe1LWevAQcme64bl/iKw5LtrUtlZDupp6ldXulAJ4v4eumCv +gs+Lk/7qrAeVoKXiD3VWkYPsqARX9kMlENq1TiNMgYP6d/nmSOytAn2cnZFP +tnDQULy4NInxFuRvU9IJW89BPJtD1MbqapDj1HI3cSkHCfx7UntRoQ6YMS6c +r/xWgtSCv3jpWtaBJUaWZP6OEuQgvmq7fGwdmJP97XCkvQRVK0Xf7flXB8pl +DKPLPpagQKeQk6Zv34OMw1qcoJoSROp0/3bErB6Ud0ZW+DNL0M0fGTdEtJoA +nIoiqfuVoCsVvhFDbi3gFnOPys1VJWhaJDa7I7wFlDIHwiXFSpCPZWZDXVoL +uOI5El0iXIIiSM3CL9paQFaaYcG4QAnK1NjwwHZfK0gn3sZrzRWjruKqxO/k +T6CZOM3w6ypGBiyB3KZ7beCTnBTV5HkxUkiLaSZyvgBtNXEXqZ3F6Le+g+QP +tS4wwh52CWcUobg1QVIpFj0grkzNrJn7Gu11K8ylfugF8d+29pXkFaDKz08M +Lm0eAG5fr3CVXNhIKWJBQ+LoMCioTWrdDwl0pHffD8Wzo0BttNc3jMZCfTsK +tCaHxsB6D5lVmeN5aMMtF9ttE2NA+OipqIKRPGT2QfaO1b8xsGFTlEPNQB5q +coqpauIbB5NuQ0aj3Xmo+Pnlw9nrxoHYTav4Cy15KEJm20E7g3Hwa3r4WSGR +h5TEk9XbWeMgNKKy4KZnHrpoc9ZsRfE4cPegjXZdy0MZLCFv7TfjIEP1Pjjq +lofWGN0qIT6Mg8TclH0bnfMQLcp03/3f48DxeozRvFkealsirqa7agKQnDPR +iYN56OZcqArHawKIXn7yM1EwDzW4W8d6+U+Ayk1UZQWBPCQ9rM5VC5kAlk9f +KlTy5aGqb38L2A8mwPf5ttOzC0wkiE7vy2VOgLNS6/3Tx5goyV/mYGrvBHi5 +z7J54DMTjf6bSbEYngA9ng5/61qZ6JBbK2X95AQYLHznxGxmoj6r4Kon5Emw +z2/Vy/D3TKSoOXzkgeQkCFp6KCMQMVE5vUg/xGgSMEVNhsIzmUjMNzpX22QS +tFM+ddakM5HdlLMwn8UkkJNQXxB4xkRL+9d99HeZBNI/nwulJDKRUW3g6Zsh +k0Cxef1yyRgm+hVuYOZaNgl0LE9fOunLRLtpW0u3v50EGTYVVf+8mSjEm7pu +8P0kaFOVMHjuxUQ7XAp+2H+ZBE2/k4wkrjPRdX1Ja8vJSQCFBNafcmEifpF+ +x1NbueBo4ViO5nkm4gWbaT1V5IJ6IGUffI6JeheapAd2cwFTYzC02YSJqoeK +PvsexvEPChe8zzBR0LtwrSwzLuBPWhOhYIA/H5BkeFZcsNvn9dccfVxfgfsc +dOQCxS3fD+zRYyLttPOstmtc8Mh35VMLXSai++2UoURxgc/cr+sSWnh93rO5 +4w+4IM7bTLjzMF7fRaI97gkXrB/pCMo8hNc/R47akckFNhe8vcwgExV8vOZ0 +I4cLNCIllDQBE2UcHdCqJLig2Ltizy4NnN+eljnjci64sOjMVFHH+eUcaX9W +wwUFJoJWB/fj/DZxWCP1XPDDQbjHeB/Oj5HuFPiVC7yQRWe6Gt7fsNXajV14 +f+ZYTzr2MJEc+a7Mmj4u2KQQU7gWm/73envuBBd8vEdPL9mF87cdZM3844Jn +2a+q1mL3dl6I0iLxgFjzpu4gVSZqO9nqdI/OA7J7P8nPq+B66nS0OwR5oL01 +/q0PdsHBUhk5Bg94v/vTuww7o1Bp/vJqHugr/slJU2aihzsz2kvW84C1h5Pn +UeygjDUEXY4HqlIMDWaUcH1SUVGG23ng+IGLHq+x7WKpzgnKPFCxpljOH/vM +shvafWo8IDoR+egstnbAkIwy4IF/tkUC+7F3/7OY99biATfn0qJt2HKXP7XX +HOOB01qkwS3YK/uOEqJGPKDQK9CzC5tuXhZ13pgHfKerB05g81qVnTPNeeCK +Zav+DezeY8+1J2x4AES1XsjFbqtYu0HDmQccHRrduNjVe+/Nh1zhgTr55J+6 +uJ4CJu1LiwcPaHZfWcbEztjsSazz4YEH7idOb8L78TBpOMoxkAd2rqvdmoUd +JG7lTITxAPMje+Eg3t/rEW3ai/d4YFxY7PgAth312AbdOB7gqxeLS8Pv44wX +mo9N5IFXwmddr+zG9Y+pfPnxjAds5qwvGuL3udshk9j6kgdUw732auH3L/dD +8t41Jg+oPauM1NvLRHz1fEeWlfKA+x2N5U/x+RF0SbD+VskDKTN/ePQDuL+X +q/jl1vFAgtbu0HB8/iSzaxP8m3lgb9FnewV8XmX1LIpOtvOArrKh79hBJto+ +zPu06QcPdKUoSX3G5101MnJ86jcP2Fm5iXfjftCsL96WMMED8T6yGR64X467 +GOq4zvAAz3GwZznup1PL+20geQr80Rb40nOCicyyffxFl0yB2//ME0ROMpG1 +nnjSL6EpUJSauuwT7len4aziAvEpEKKZ0pRjykRukYc+h0hOgSuVwf7B5kwU +UH9JeMfWKTCddyZtlx0ThbnQdywqToHxn7/EljkxUfTyxKPNe6ZAh2aG6w88 +P1L16gKuaeH48IqOwGt43tXLckstpsA25rPAikAmIjV8+aIfNwVqM90Dl+D5 +NtuQfTH6yjSYvt4he3B1Hvp9Nmf1unUzoEWT7TaP75+DIa4u77JngXuw2CmZ +rHz0YKFQ4PCFeRClSZ5ZPMdCgpvfuj6wnQerZxNu2ZizUOCJ5pY+53kAEvwe +1liwkFvyn8SIG/Mg+YtRUKgtC+kfWqPcdn8edD0KN5xzZSF60E1Tx6p5cDXq +nVKiPwvdWK6RFbVlAUiEfJx+l85C5yQrj3dOLADJxKaW3D8sNOAyNs6eWQBi +QMvh5yB+Hq1/HEVeBDnRMUoiIyz00Mr796EVi+BcaIiF8zgLfczc5fNi6yKI +6bOUXjrLQrq7MnOvWy4Cl+rYV6PLCLRPP1JUpHERFAVclDHfTqDapyWFA58W +weSpr/C0AoGMx/6YV3UugkDl5Nu6igS6Fqud5TGwCI6/WHJlpyqODy/K/KWQ +oJCFXGf3fgLFqhQVn15HgtbeqV5/dQkk+Gbb0IbTJFgZqSqeYE+g7seG73yN +SdBQwShM35FAr696pHWeI0GV8IsbF50IZLW50uyhFQk2icYiU1ccv2taL3CZ +BGOKH9+fdcfx86E5o2Ek2Ltx5fYefwIVzvReLntDgmJD+0q04wl0t1VQb20V +Ca7Iin7NeUIg6xzlLTdqSHDUabhGMZFAQlY+P5UaSPB7A3MDIxnHa8WN0jvw +ejse579Jx/FHmioRPBKc8LpaX8YkkO2uVK7JdjLsftvjc/gtgcLuiq+4tZMM +5TTUFe2qCZTTFyKfrEyGBpsrNgfXEIj3+NK5XjUyPMEq76usJVDIgnq5mxYZ +MrIDkuUbCPSy5nNEuDkZaq2pT0hqI1CD9LGMHEsy3C+R45/+mUDjnmWo2YYM +W5dcznjZTqD929PHVzmT4bQCX07uVwJ9uOdmnOZBhgv+t16mfSfQiMly2dJ7 +ZKhCEiXv6yWQKMvvQFcMGY4/XsGW7SPQbsHJM9Q4MlwykJ26vJ9AvmVfQ48m +4vzGD2z5+odAwhsz/356QYbyebXt54cJpDx0qGSkggz1hZ85rZgkkIfPDSNp +Lhl6SNukSZDYSH7IWzB4mgznw/hT27HbTfyrh2fJUDB+xushmY3UdoXtK6FQ +4IhuB2cZlY2mB59sOCNMgcmsDrdOPjbyMkHj4dsosHGKvW/lMjbaWlP5alyB +Al07m/NZ2F9V39mZKFNg6oarC/qCbLRfuPmr3F4KvOh5Wsh3ORvNVXdXlGtT +oEaoAPXtCjbyUaXHTFlSoJDtr5Y+BhsppC7VM7elwDL7o7pWYmz0fcUK/rcO +OC7lGfEVGwyuuhl9iQKl3x5zqxJnI1LqFusdtyiQ/kun4NYqNmKuUJCK9aPA +2cuRt3qxLW4pf565TYH+7VWCehJsVG68/9i7MArMKZTxZ6xmo4AVeirWjyjw +oO424s4aNlK+ZThc+4QCzV4mZXdidw+cfq74lAI7FxSdlday0eFq87UL6bh+ +v1rFVuxJFetPNi8oMP9cx54NkmyUlmIf9f4VBSb4biS7YtNuXaY+ZlFg4UfX +9gVsYsC9dLGAAquUfX4flmIjG2NPD7tiChRR6MwPwq5SCRhUKafA9PcJEXzr +2OjOQExLQwMFpuj3KPRjB37+XTfbTIHxAw1dq9ZjV+2pkP9EgRtePXqshR2Q +1MEM6KDApZf3r3uC7R++IzP3O85/6Yk/Fdh+N3yfdv6kQJZAQVE/to/Rxru7 ++ymQ+37CQUGajW6Ba3esBylQIojviD629/Ya73sjFKgW3CV/Efvm6tXupWMU +yLTZIBSC7UV3dh6YpECFXAdeCrbnBMdq1TQFdmw1/FmEfaNLyFRzlgINwj0b +GrE96i0MryxQ4Hlf39Ie7OvF+TpJZCo8NEHK4WJfe06D72lUWJ715CmfDBu5 +x57ZM81PhWczhu8zsK/6ZypsWkaF+Y9iA9dju7nObDISokLIVPDYgn3l3HEp +XxEqjCgxcVTCvqyTJPZKjAqzBQjTPf951+iyL6uo8NbVDt392Jc2HKLS11Lh +S1PXvQewXVfEziivo8K9iUvl/u+532MXZKjwerm+8H/Pu/zZ8ydClgppDe1T +u7EvtoV2FW2mwlTNI52K2M6VHZ97t1Jh5lm1UnlsJ+aORoYCFZr568avw3ZM +9K2GSlQ4RZO8KortENZc6qJKhTfCjx2hYdt7bGTH76FCo3seKyfxftjZXHtV +s48Kj0VrdP3EtjWseTZ5gAq/rwNp9dg2GqufyBykwqvfV1m9xrbe5hytr0mF +EsH2q59iW0mUht48QoVh3R9qA7Etxy1ufNKjwt17T4rpYlv8yL9EMaTCtqX5 +2Vv+8wea/c5TVKhTl6LBj22ekXk61JQKuzxytTj4vJyPmTlecJ4KSX7LSmKw +zfyOa/ZYUGEPdJdzxDY1HVU+YE+FGc/7vy3HNjlyaKuTExX6uypv+YbPr7Fq +rEycCxWqZfE5vsQ+I6QmPHaVCptU31ZpYJ+eDeVf50GFG7aM/vjv/J/q71jQ +9aJCpQKZkTrcHycrfIfT/KiwYs3Kbn1so9zmX8238fvjl6hZ/p8TNnYuBFHh +Rb2kxDrcbwbXa+qMI6mwyqdASgP7+NYVmYLxVOjbFX5BEPevybtLmVsSqZDC +vW7Lwf1uZ9eUqZ1MhWV6t1ydsP1S77/wy6DC4NkrIW/wvCDWiGVN5lOhQqfY +x1P/zZNC9yyRAiqkN072TuJ503DmU5ZCERXK5UvORWP3Rz985YCoMK7h66ba +lWwkuWx1Tud7Kgw0VHGRwvNrywvPnH8NVHjQyN0rG8+33Ue+5qz8iPefsv3O +fmyD209yDdqpsMEw7r4hno+Bs1J5Vb+o8OvzEG9bETYaGtxAvJrH+ekfPb4d +z9d/obeJWhINiu78Sk/A85cu/4vopdLgvaPaRQLY0jbpbOmlNBitrkv7sRTv +b+fm17ErabCpeP+WK0vYiPNhe7H3Thrsny6wUMHzv9YpsvixMg3OVG+8FEBh +49/LI8UFu2gwYvmXS434vhjVzC0Z3U+DakbF2tb4PpEtVSq10aFBheMp0G2e +QJHZu98ct6TBgFrXVTumCCRnIW+ZbYP/Xyloz1EegcpE11CEHGhwqN6414pL +oFGP+cONrjR40eriyN0JAp06VFVj6E2DweKzT2r/Ekjys2HjmTgalHfXX1qL +70d26OHLr+NxfdD4Zym+P/XVd4lIJNGgJGslZP4mkF+KxMkvaTSopDweHdlD +oF/OP9rO5dOg+6Xf/lt/EOgVyeW7RT0N5u6Y2TD8iUBaLHPf8iYa1Pv6Bxa3 +Eui7rYH0hlYaLCyI+RHYgu/b9ypWPV9p0E3BJFG0mUDuD2Z+2/bToKJ+gJDw +B3zfbw0ZdqLyQUf1HXbR5QSqO/lszn0vH/ztDX7lvSRQ/p3ur0/U+eCIgY66 +zgsCxb+WKaoAfFD9TNy5zucEclqbfE1Ymw9u5X82Mp9GIIGehJEsIz54RiTX +TO4pgXTcHnZ1O/PB/muZSwVjCPT2XmiVQRIfHGrXh/KeuJ6Kd6keKXxQefxd +63UP/H1ukt8/KY0PXou6vKnyGoHvm6ADQy/5oL5C/79TbgSiSd8uCH7NB3tY +H23POxPoUK53ZlkTH3x1LmKOdJ5Ab+ovRWyn0uHeR8Nl9zQIpCoGl8XR6TC2 ++XuSszqBMk2Fw8hL6ZB3s+Hd4X0EiupjBrcJ06GQ2ND04C4CmZPHA/zW0SFY +tli6dgeB5lTdPVv30iF3VbTX9BoC7U24Yed9mQ6T7dYUPptkoVfdOr97r9Jh +n5IPeTP+/iu9ZbWNoQcdliYxgp//ZaElBUWWcj50iJiSWskDLNTeOGPWFE6H +Gd0v/S53sdB16q2Tss/psE119EH4exbKd/KHH77RoUqr4IEXT1lI1crindxP +OjQ3sPTrSmChAhNg4P+LDv+VWAiKx7NQkc78hd2DdBglUj13LZaF3sh5+iZP +02GqPVdlVSgL1XdfLnNn8MNlnadT266wUL+phbrUUX54NSOQ0D7IQuuOATVX +gh8edJC+8elzPhopd56/+5ofrvjjVRDXmo+Q2qOK3GJ+KK/S5X+2OR9ZyI0d +H3vDD6e67pQ11uWjVPIzS/d6fkg7ZFydWpqPNhfSw716+aFuNL32Y2o+UtzU +8C1IYgksfWpgbeycjw4vmt1+6r0EFty1OtI/mYds2tB44WkBGKK5MLWymYk0 +/APY+JcDZF4g6dXK56LoS2Mlgn1LocH370bmdq9Qt19679OyZXBIqN7tHN8L +NGhbZFMRLAi3+5SKnfdNR6Muovz1lsthoG/kzSOHU1DO0fdzdjuEIGn1+1Hj +5seo10FxN5UrBIX57IWtb99Da7K+xgTXr4DQUtOsY+t1dNvCLbX+mDD0OzDV +sLjlOpiaWx15rAib2V0YdisayJfEPa6TFYE3jBDr+MpksMv67QmRUBHoIChh +af0nA7xJEJf4wBWByRYs9fT6HCD/RjxM/5wodKdu+SNmxAJ6fENSH8tEYeD+ +hynC1q/BaMevytqtDKi2N7tlcDkHXEqIZIRGMeAI6enyrJNvwAey7F/d+wzo +HqZB2WX+Bmy1L64TjGFAeYLftNzhDfil1Od/7yEDVpwrV/l56w0wroGjcYnY +qjdjD2S+AYfGJz5kZDFgv6CuouP8G7BSxzSoqoYBhXp+zUS8KAdXs0ctg2oZ +UPqU7HNrohw0iQYf0HnPgEu2fytRR+Ug/Btr8n0DAzbp2azntZYD0tXl1i2f +cLzMseUOqQIMJL4B3T0MGG9yUmy1cQU4Qj27Nu03A+o8mT+30roCpDkM82z7 +GNAu663QStcKcEFlTc6fAQZkWhsXSAZWgNZ3VyXHxhjQbNsm0SPMCqCksHQ6 +f4IBF76ce322pALcjUlucecyoOsgudapugIcNa8Pm55mQNEwTeVHnRUgo9La +rngG12u1Kyy/rwLQtswc9J5jwG4+jRON4xXA8u49KY0FBjR9EuI/Ml8Byibk +/i0uMmC1JpARFqgE/wO9KCa7 + "]]}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{ + FormBox[ + "\"\[CapitalDelta]/\\!\\(\\*SubscriptBox[\\(\[Epsilon]\\), \\(F\\)]\\)\"", + TraditionalForm], + FormBox[ + "\"\[CapitalOmega]/\\!\\(\\*SubscriptBox[\\(\[Epsilon]\\), \\(F\\)]\\)\"", + TraditionalForm]}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->{989.26171875, Automatic}, + Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, + PlotRange->{{0, 5}, {-0.11212636061703292`, 0.1487140810336653}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{3.7269843165016937`*^9, 3.726984387488474*^9, + 3.727038885202003*^9, 3.727038915681938*^9, 3.727038948184915*^9}] +}, Open ]], + +Cell[BoxData[""], "Input", + CellChangeTimes->{{3.726983882073276*^9, 3.7269838870634537`*^9}}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", + RowBox[{"Thermaldynamical", " ", "Potential"}], "*)"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"ClearAll", "[", "\"\\"", "]"}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"t", "=", + RowBox[{"-", "0.1"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"r", "=", "0.5"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[Epsilon]", "[", "k_", "]"}], ":=", + RowBox[{"k", "^", "2"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[Epsilon]n", "[", "k_", "]"}], ":=", + RowBox[{ + RowBox[{"\[Epsilon]", "[", "k", "]"}], "*", + RowBox[{ + RowBox[{"(", + RowBox[{"r", "-", "1"}], ")"}], "/", + RowBox[{"(", + RowBox[{"r", "+", "1"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[Xi]", "[", + RowBox[{"k_", ",", "\[Mu]_"}], "]"}], ":=", + RowBox[{ + RowBox[{"\[Epsilon]", "[", "k", "]"}], "-", "\[Mu]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"Ek", "[", + RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_"}], "]"}], ":=", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{ + RowBox[{"\[Xi]", "[", + RowBox[{"k", ",", "\[Mu]"}], "]"}], "^", "2"}], "+", + RowBox[{"\[CapitalDelta]", "^", "2"}]}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"E1", "[", + RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}], + "]"}], ":=", + RowBox[{ + RowBox[{"Ek", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "-", + RowBox[{"(", + RowBox[{"h", "-", + RowBox[{"\[Epsilon]n", "[", "k", "]"}]}], ")"}]}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"E2", "[", + RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}], + "]"}], ":=", + RowBox[{ + RowBox[{"Ek", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "+", + RowBox[{"(", + RowBox[{"h", "-", + RowBox[{"\[Epsilon]n", "[", "k", "]"}]}], ")"}]}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"T1", "[", + RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}], + "]"}], ":=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"E1", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], "]"}], + "<", "0"}], ",", "1", ",", "0"}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"T2", "[", + RowBox[{"k_", ",", "\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}], + "]"}], ":=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"E2", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], "]"}], + "<", "0"}], ",", "1", ",", "0"}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalOmega]0", "[", + RowBox[{"\[Mu]_", ",", "\[CapitalDelta]_"}], "]"}], ":=", + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalDelta]", "^", "2"}], "/", "2"}], "+", + RowBox[{ + RowBox[{"k", "^", "2"}], + RowBox[{"\[Xi]", "[", + RowBox[{"k", ",", "\[Mu]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"k", "^", "2"}], " ", + RowBox[{"Ek", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", "0", ",", "5"}], "}"}]}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalOmega]1", "[", + RowBox[{"\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}], "]"}], ":=", + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{"k", "^", "2"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"E1", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], + "]"}], "*", + RowBox[{"T1", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], + "]"}]}], "+", + RowBox[{ + RowBox[{"E2", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], + "]"}], "*", + RowBox[{"T2", "[", + RowBox[{"k", ",", "\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], + "]"}]}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalOmega]", "[", + RowBox[{"\[Mu]_", ",", "\[CapitalDelta]_", ",", "h_"}], "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"\[CapitalDelta]", "^", "2"}]}], " ", + RowBox[{"t", "/", + RowBox[{"(", + RowBox[{"4", " ", "Pi"}], ")"}]}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"2", " ", + RowBox[{"Pi", "^", "2"}]}], ")"}]}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"\[CapitalOmega]0", "[", + RowBox[{"\[Mu]", ",", "\[CapitalDelta]"}], "]"}], "+", + RowBox[{"\[CapitalOmega]1", "[", + RowBox[{"\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], "]"}]}], + ")"}]}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"finddelta", "[", + RowBox[{"\[Mu]0_", ",", "h0_"}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"\[Mu]", "=", "\[Mu]0"}], ",", + RowBox[{"h", "=", "h0"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[CapitalDelta]", "/.", + RowBox[{ + RowBox[{"FindMinimum", "[", + RowBox[{ + RowBox[{"\[CapitalOmega]", "[", + RowBox[{"\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[CapitalDelta]", ",", "0.5"}], "}"}]}], "]"}], "[", + RowBox[{"[", "2", "]"}], "]"}]}], ",", + RowBox[{ + RowBox[{"FindMinimum", "[", + RowBox[{ + RowBox[{"\[CapitalOmega]", "[", + RowBox[{"\[Mu]", ",", "\[CapitalDelta]", ",", "h"}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[CapitalDelta]", ",", "0.5"}], "}"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalOmega]test", "[", + RowBox[{"\[Mu]0_", ",", "h0_"}], "]"}], ":=", + RowBox[{ + RowBox[{"finddelta", "[", + RowBox[{"\[Mu]0", ",", "h0"}], "]"}], "[", + RowBox[{"[", "2", "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"data", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"\[CapitalDelta]", "/.", + RowBox[{ + RowBox[{"FindMinimum", "[", + RowBox[{ + RowBox[{"\[CapitalOmega]", "[", + RowBox[{"\[Mu]0", ",", "\[CapitalDelta]", ",", "h0"}], "]"}], + ",", + RowBox[{"{", + RowBox[{"\[CapitalDelta]", ",", "0.5"}], "}"}]}], "]"}], "[", + RowBox[{"[", "2", "]"}], "]"}]}], ",", + RowBox[{ + RowBox[{"FindMinimum", "[", + RowBox[{ + RowBox[{"\[CapitalOmega]", "[", + RowBox[{"\[Mu]0", ",", "\[CapitalDelta]", ",", "h0"}], "]"}], + ",", + RowBox[{"{", + RowBox[{"\[CapitalDelta]", ",", "0.5"}], "}"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Mu]0", ",", + RowBox[{"-", "1"}], ",", "1", ",", "0.2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"h0", ",", + RowBox[{"-", "1"}], ",", "1", ",", "0.2"}], "}"}]}], "]"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{"ListPlot", "[", + RowBox[{"Flatten", "[", + RowBox[{"data", ",", "1"}], "]"}], "]"}]}]}]], "Input", + CellChangeTimes->{{3.7269670720029345`*^9, 3.726967148312896*^9}, { + 3.72696739861018*^9, 3.726967408502452*^9}, {3.7269674641534433`*^9, + 3.7269674875907927`*^9}, {3.7269675321392183`*^9, 3.726967535328699*^9}, + 3.7269675814644957`*^9, 3.7269676192700253`*^9, {3.7269676776622972`*^9, + 3.7269677077302637`*^9}, {3.726967803847849*^9, 3.726967804159703*^9}, + 3.7269679399186735`*^9, {3.7269681375367637`*^9, 3.7269681406269813`*^9}, { + 3.7269682456512547`*^9, 3.7269682542972884`*^9}, {3.72696842073483*^9, + 3.7269684724594035`*^9}, {3.726968518019517*^9, 3.7269685890353975`*^9}, { + 3.726968668992016*^9, 3.726968961052644*^9}, {3.726969012571667*^9, + 3.7269690936614943`*^9}, {3.726969131289547*^9, 3.7269691359018335`*^9}, + 3.726969169977436*^9, {3.7269692281871834`*^9, 3.7269692303589597`*^9}, { + 3.726969264061517*^9, 3.7269692914046507`*^9}, {3.7269693480949965`*^9, + 3.726969398551165*^9}, {3.726974353606646*^9, 3.726974356628274*^9}, + 3.726974810837315*^9, {3.726975112405623*^9, 3.726975143147767*^9}}, + ExpressionUUID -> "55714beb-69d6-4cb2-b076-66327c6ea8e2"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "inumr"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"The integrand \[NoBreak]\\!\\(\\(\\(k\\^2\\\\ \ +\\(\\((\\(\\(1.` \[VeryThinSpace]\\)\\) + k\\^2)\\)\\)\\)\\) + \ +\[CapitalDelta]\\^2\\/2 - \\(\\(k\\^2\\\\ \\@\\(\\((\\(\\(1.` \ +\[VeryThinSpace]\\)\\) + k\\^2)\\)\\^2 + \[CapitalDelta]\\^2\\)\\)\\)\\)\ +\[NoBreak] has evaluated to non-numerical values for all sampling points in \ +the region with boundaries \[NoBreak]\\!\\({\\({0, 5}\\)}\\)\[NoBreak]. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/NIntegrate/inumr\\\", \ +ButtonNote -> \\\"NIntegrate::inumr\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.7269751434921303`*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "inumr"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"The integrand \[NoBreak]\\!\\(k\\^2\\\\ \ +\\(\\((\\(\\(\\(\\((\\(\\(1.` \[VeryThinSpace]\\)\\) - \ +\\(\\(0.3333333333333333`\\\\ k\\^2\\)\\) + \\@\\(\\(Plus[\\(\\(\ +\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\^2 + \[CapitalDelta]\\^2\\))\\)\ +\\)\\\\ \\(\\(If[\\(\\(\\(\\(\\(\\(\\(\\(1.` \[VeryThinSpace]\\)\\) - \ +\\(\\(0.3333333333333333`\\\\ \\(\\(Power[\\(\\(\[LeftSkeleton] 2 \ +\[RightSkeleton]\\)\\)]\\)\\)\\)\\) + \\@\\(Plus[\\(\\(\[LeftSkeleton] 2 \ +\[RightSkeleton]\\)\\)]\\)\\)\\) < 0\\)\\), 1, 0\\)\\)]\\)\\)\\)\\) + \ +\\(\\(\\(\\((\\(\\(-1.`\\)\\) + \\(\\(0.3333333333333333`\\\\ k\\^2\\)\\) + \ +\\@\\(\\(Plus[\\(\\(\[LeftSkeleton] 2 \[RightSkeleton]\\)\\)]\\)\\^2 + \ +\[CapitalDelta]\\^2\\))\\)\\)\\\\ \\(\\(If[\\(\\(\\(\\(\\(\\(\\(\\(-1.`\\)\\) \ ++ \\(\\(0.3333333333333333`\\\\ \\(\\(Power[\\(\\(\[LeftSkeleton] 2 \ +\[RightSkeleton]\\)\\)]\\)\\)\\)\\) + \\@\\(Plus[\\(\\(\[LeftSkeleton] 2 \ +\[RightSkeleton]\\)\\)]\\)\\)\\) < 0\\)\\), 1, 0\\)\\)]\\)\\)\\)\\))\\)\\)\\)\ +\[NoBreak] has evaluated to non-numerical values for all sampling points in \ +the region with boundaries \[NoBreak]\\!\\({\\({0, 5}\\)}\\)\[NoBreak]. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/NIntegrate/inumr\\\", \ +ButtonNote -> \\\"NIntegrate::inumr\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975143513546*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "inumr"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"The integrand \[NoBreak]\\!\\(\\(\\(k\\^2\\\\ \ +\\(\\((\\(\\(1.` \[VeryThinSpace]\\)\\) + k\\^2)\\)\\)\\)\\) + \ +\[CapitalDelta]\\^2\\/2 - \\(\\(k\\^2\\\\ \\@\\(\\((\\(\\(1.` \ +\[VeryThinSpace]\\)\\) + k\\^2)\\)\\^2 + \[CapitalDelta]\\^2\\)\\)\\)\\)\ +\[NoBreak] has evaluated to non-numerical values for all sampling points in \ +the region with boundaries \[NoBreak]\\!\\({\\({0, 5}\\)}\\)\[NoBreak]. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/NIntegrate/inumr\\\", \ +ButtonNote -> \\\"NIntegrate::inumr\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975143536277*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Further output of \ +\[NoBreak]\\!\\(\\*StyleBox[\\(NIntegrate :: inumr\\), \ +\\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this calculation. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \ +ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975143550954*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Numerical integration converging too slowly; suspect one \ +of the following: singularity, value of the integration is 0, highly \ +oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\ +\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \ +\\\"NIntegrate::slwcon\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975144049362*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "ncvb"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"NIntegrate failed to converge to prescribed accuracy after \ +\[NoBreak]\\!\\(9\\)\[NoBreak] recursive bisections in \[NoBreak]\\!\\(k\\)\ +\[NoBreak] near \[NoBreak]\\!\\({k}\\)\[NoBreak] = \ +\[NoBreak]\\!\\({4.835445152341417`15.954589770191005}\\)\[NoBreak]. \ +NIntegrate obtained \[NoBreak]\\!\\(6.491708354947283`*^-10\\)\[NoBreak] and \ +\[NoBreak]\\!\\(5.64180641227194`*^-15\\)\[NoBreak] for the integral and \ +error estimates. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\ +\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/NIntegrate/ncvb\\\", ButtonNote -> \ +\\\"NIntegrate::ncvb\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975144075665*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Numerical integration converging too slowly; suspect one \ +of the following: singularity, value of the integration is 0, highly \ +oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\ +\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \ +\\\"NIntegrate::slwcon\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975144252795*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "ncvb"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"NIntegrate failed to converge to prescribed accuracy after \ +\[NoBreak]\\!\\(9\\)\[NoBreak] recursive bisections in \[NoBreak]\\!\\(k\\)\ +\[NoBreak] near \[NoBreak]\\!\\({k}\\)\[NoBreak] = \ +\[NoBreak]\\!\\({4.835445152341417`15.954589770191005}\\)\[NoBreak]. \ +NIntegrate obtained \[NoBreak]\\!\\(6.491708354947283`*^-10\\)\[NoBreak] and \ +\[NoBreak]\\!\\(5.64180641227194`*^-15\\)\[NoBreak] for the integral and \ +error estimates. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\ +\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/NIntegrate/ncvb\\\", ButtonNote -> \ +\\\"NIntegrate::ncvb\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975144278961*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "slwcon"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Numerical integration converging too slowly; suspect one \ +of the following: singularity, value of the integration is 0, highly \ +oscillatory integrand, or WorkingPrecision too small. \\!\\(\\*ButtonBox[\\\"\ +\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/NIntegrate/slwcon\\\", ButtonNote -> \ +\\\"NIntegrate::slwcon\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975144454548*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Further output of \ +\[NoBreak]\\!\\(\\*StyleBox[\\(NIntegrate :: slwcon\\), \ +\\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this calculation. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \ +ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975144468851*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "ncvb"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"NIntegrate failed to converge to prescribed accuracy after \ +\[NoBreak]\\!\\(9\\)\[NoBreak] recursive bisections in \[NoBreak]\\!\\(k\\)\ +\[NoBreak] near \[NoBreak]\\!\\({k}\\)\[NoBreak] = \ +\[NoBreak]\\!\\({4.94748847128778389270475912553592934273183345794677734375`\ +65.954589770191}\\)\[NoBreak]. NIntegrate obtained \ +\[NoBreak]\\!\\(6.485387624179541`*^-10\\)\[NoBreak] and \ +\[NoBreak]\\!\\(6.454580101038746`*^-15\\)\[NoBreak] for the integral and \ +error estimates. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\ +\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/NIntegrate/ncvb\\\", ButtonNote -> \ +\\\"NIntegrate::ncvb\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.7269751444908943`*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Further output of \ +\[NoBreak]\\!\\(\\*StyleBox[\\(NIntegrate :: ncvb\\), \\\"MessageName\\\"]\\)\ +\[NoBreak] will be suppressed during this calculation. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \ +ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975144505975*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindMinimum", "::", "lstol"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"The line search decreased the step size to within the \ +tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find \ +a sufficient decrease in the function. You may need more than \ +\[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digits of working precision to \ +meet these tolerances. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ +ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/FindMinimum/lstol\\\", ButtonNote -> \ +\\\"FindMinimum::lstol\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975147614923*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindMinimum", "::", "lstol"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"The line search decreased the step size to within the \ +tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find \ +a sufficient decrease in the function. You may need more than \ +\[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digits of working precision to \ +meet these tolerances. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ +ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/FindMinimum/lstol\\\", ButtonNote -> \ +\\\"FindMinimum::lstol\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975151544942*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindMinimum", "::", "lstol"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"The line search decreased the step size to within the \ +tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find \ +a sufficient decrease in the function. You may need more than \ +\[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digits of working precision to \ +meet these tolerances. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ +ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/FindMinimum/lstol\\\", ButtonNote -> \ +\\\"FindMinimum::lstol\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975155511532*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Further output of \ +\[NoBreak]\\!\\(\\*StyleBox[\\(FindMinimum :: lstol\\), \ +\\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this calculation. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \ +ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975155526389*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "errprec"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Catastrophic loss of precision in the global error \ +estimate due to insufficient WorkingPrecision or divergent integral. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \ +\\\"NIntegrate::errprec\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975476730262*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "errprec"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Catastrophic loss of precision in the global error \ +estimate due to insufficient WorkingPrecision or divergent integral. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \ +\\\"NIntegrate::errprec\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.7269754768763*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "errprec"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Catastrophic loss of precision in the global error \ +estimate due to insufficient WorkingPrecision or divergent integral. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \ +\\\"NIntegrate::errprec\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975476920856*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Further output of \ +\[NoBreak]\\!\\(\\*StyleBox[\\(NIntegrate :: errprec\\), \\\"MessageName\\\"]\ +\\)\[NoBreak] will be suppressed during this calculation. \\!\\(\\*ButtonBox[\ +\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/General/stop\\\", ButtonNote -> \ +\\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975476935334*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindMinimum", "::", "nrnum"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"The function value \ +\[NoBreak]\\!\\(4.3976623586642924`*^-17 + \ +\\(\\(\\(-0.04957418683145378`\\)\\) + \ +\\(\\(NIntegrate[\\(\\(\\(\\(Compile`$1\\/2 + \\(\\(Compile`$220\\\\ \\(\\(\ +\[Xi][\\(\\(k, \\(\\(-0.3999999999999999`\\)\\)\\)\\)]\\)\\)\\)\\) - \ +\\(\\(Compile`$220\\\\ \\(\\(Ek[\\(\\(\[LeftSkeleton] 3 \ +\[RightSkeleton]\\)\\)]\\)\\)\\)\\)\\)\\), \\(\\({k, 0, 5}\\)\\)\\)\\)]\\)\\)\ +\\)\\/\\(2\\\\ \[Pi]\\^2\\)\\)\[NoBreak] is not a real number at \ +\[NoBreak]\\!\\({\[CapitalDelta]}\\)\[NoBreak] = \ +\[NoBreak]\\!\\({\\(-7.433885594747367`*^-8\\)}\\)\[NoBreak]. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/FindMinimum\\\", ButtonNote -> \ +\\\"FindMinimum::nrnum\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975476981648*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindMinimum", "::", "nrnum"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"The function value \ +\[NoBreak]\\!\\(4.3976623586642924`*^-17 + \ +\\(\\(\\(-0.04957418683145378`\\)\\) + \ +\\(\\(NIntegrate[\\(\\(\\(\\(Compile`$1\\/2 + \\(\\(Compile`$220\\\\ \\(\\(\ +\[Xi][\\(\\(k, \\(\\(-0.3999999999999999`\\)\\)\\)\\)]\\)\\)\\)\\) - \ +\\(\\(Compile`$220\\\\ \\(\\(Ek[\\(\\(\[LeftSkeleton] 3 \ +\[RightSkeleton]\\)\\)]\\)\\)\\)\\)\\)\\), \\(\\({k, 0, 5}\\)\\)\\)\\)]\\)\\)\ +\\)\\/\\(2\\\\ \[Pi]\\^2\\)\\)\[NoBreak] is not a real number at \ +\[NoBreak]\\!\\({\[CapitalDelta]}\\)\[NoBreak] = \ +\[NoBreak]\\!\\({\\(-7.433885594747367`*^-8\\)}\\)\[NoBreak]. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/FindMinimum\\\", ButtonNote -> \ +\\\"FindMinimum::nrnum\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975481320381*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindMinimum", "::", "nrnum"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"The function value \ +\[NoBreak]\\!\\(5.5776142371398315`*^-18 + \ +\\(\\(\\(-0.09914837366290977`\\)\\) + \ +\\(\\(NIntegrate[\\(\\(\\(\\(Compile`$1\\/2 + \\(\\(Compile`$220\\\\ \\(\\(\ +\[Xi][\\(\\(k, \\(\\(-0.19999999999999996`\\)\\)\\)\\)]\\)\\)\\)\\) - \ +\\(\\(Compile`$220\\\\ \\(\\(Ek[\\(\\(\[LeftSkeleton] 3 \ +\[RightSkeleton]\\)\\)]\\)\\)\\)\\)\\)\\), \\(\\({k, 0, 5}\\)\\)\\)\\)]\\)\\)\ +\\)\\/\\(2\\\\ \[Pi]\\^2\\)\\)\[NoBreak] is not a real number at \ +\[NoBreak]\\!\\({\[CapitalDelta]}\\)\[NoBreak] = \ +\[NoBreak]\\!\\({\\(-2.64745854826521`*^-8\\)}\\)\[NoBreak]. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/FindMinimum\\\", ButtonNote -> \ +\\\"FindMinimum::nrnum\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975495876243*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Further output of \ +\[NoBreak]\\!\\(\\*StyleBox[\\(FindMinimum :: nrnum\\), \ +\\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this calculation. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \ +ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975495890251*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindMinimum", "::", "sdprec"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Line search unable to find a sufficient decrease in the \ +function value with \[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digit \ +precision. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\ +\\\", ButtonFrame->None, ButtonData:>\\\"paclet:ref/FindMinimum\\\", \ +ButtonNote -> \\\"FindMinimum::sdprec\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975507598859*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindMinimum", "::", "sdprec"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Line search unable to find a sufficient decrease in the \ +function value with \[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digit \ +precision. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\ +\\\", ButtonFrame->None, ButtonData:>\\\"paclet:ref/FindMinimum\\\", \ +ButtonNote -> \\\"FindMinimum::sdprec\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975515299591*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"FindMinimum", "::", "sdprec"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Line search unable to find a sufficient decrease in the \ +function value with \[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digit \ +precision. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\ +\\\", ButtonFrame->None, ButtonData:>\\\"paclet:ref/FindMinimum\\\", \ +ButtonNote -> \\\"FindMinimum::sdprec\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975606210634*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Further output of \ +\[NoBreak]\\!\\(\\*StyleBox[\\(FindMinimum :: sdprec\\), \\\"MessageName\\\"]\ +\\)\[NoBreak] will be suppressed during this calculation. \\!\\(\\*ButtonBox[\ +\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/General/stop\\\", ButtonNote -> \ +\\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975606224814*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "izero"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Integral and error estimates are 0 on all integration \ +subregions. Try increasing the value of the MinRecursion option. If value of \ +integral may be 0, specify a finite value for the AccuracyGoal option. \\!\\(\ +\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \ +\\\"NIntegrate::izero\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.72697563341848*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "izero"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Integral and error estimates are 0 on all integration \ +subregions. Try increasing the value of the MinRecursion option. If value of \ +integral may be 0, specify a finite value for the AccuracyGoal option. \\!\\(\ +\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \ +\\\"NIntegrate::izero\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975633537328*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "izero"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Integral and error estimates are 0 on all integration \ +subregions. Try increasing the value of the MinRecursion option. If value of \ +integral may be 0, specify a finite value for the AccuracyGoal option. \\!\\(\ +\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/NIntegrate\\\", ButtonNote -> \ +\\\"NIntegrate::izero\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975633794468*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"General", "::", "stop"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"Further output of \ +\[NoBreak]\\!\\(\\*StyleBox[\\(NIntegrate :: izero\\), \ +\\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this calculation. \ +\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ +ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \ +ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{3.7269743582217712`*^9, 3.726974813382347*^9, + 3.726975633808477*^9}], + +Cell[BoxData[ + GraphicsBox[{{}, {{}, + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.01388888888888889], + AbsoluteThickness[1.6], PointBox[CompressedData[" +1:eJzN0mtU03Ucx/GdBELMgQ1ockdADdKQmwTbf5vIpXQ60TYqLGBIiVwFkuGF +TcYGk1sCCl4A51EGIijiFJLvdwFKgiJeMhAvNMQUpJRLkIiUsHrSAx94OvXg +d/7nfX4P/q/zOT/rkGj/DW+QSCTBn+fllzRxt1iiEBGKAV3bqEsNtP97txtQ +tTqajQm6zDvr4W5bjAnsv0aLnU/s7r4hKdV65vlfd57nrYzmElNCZ6xamkal +Y0Wefn0nzxUej75sNrqPx7b1pDmBs8bf7MVLz+Iug4ahb3Le7GHQ/u0+8E4d +hzS+AAZHp315Ozy6W4q9YOmUJxTbKamGA08IML+95FD0rFB0lMf1cMpyiSLF +tD+lccYmdV4+LOQsn/JrSWOGLjBXAz+J8sPXdjza63bb73toTxuXwAuNr7Br +neHY9WRwkUz7hPwGmVnSYP1X831XDAZsw2EfTpr/7Ai4kf7yPh5ZDrXN42ox +rOqc9u/Ji6E4SDzgkWZ/fdH+R4znR+B+MDHlt7LcNFDbySPU3sYQ5BRGe1U/ +j9BB83EFEW1bOeUrIQ/pRfb6grtmvwCubNSm0on4y3fCkZu5JowHfVP/z8Tu +3j4f+8RloIwtl8SPibCG7bt5ku8CDNm034rwE4waMYGq2b+bnKraHuj6t9+g +Oa41QZ5CJIun38+JLNOTl/12wohRjh9bt+QcyVk+8kLtAf2a/ZiVb50OUNoR +yzU+4UTy+9s3ugNf4zvLzj99xsgVhjQ+HRdna7cEd6JJrFelE16IpN4HkRFv +egGd1TWDuLULx1QkgUmBF6hW6z1VCUTIjMt++HOlHwhYbI4oPw6Z8XMG5KkE +OBf9WlRiEIKKmszag006sCdREr5ykTeaxT44s6CllsHNmmc+KHZG6jFbVpy4 +l6i6lZQytyAEn4yMBLHj5oB1YPS59M+24u2j4aYmrRzIrWrVvVGYgXV3o2V1 +lnSQKi42VNgX4nBjn1NTqC+4ekprGvoPo27g0+P2ZWzC2Ou9GmpMLhoG+l2e +qLSGlCyDLa4Z6airWrzx031MGM/ZFh7N24EkSnXfhWx7MFC6Vt0ZjMS1Cp9v +r59rY/RsJ3MKVOv/0cLRkx58sIPPr1J+0g/dgmTCJIosnMnoOrK4onWFDIN+ +y34UZmwGOT7gqZhRgCnXyBf30ath7fWI44yAw5i0nhJ1tS0EYm6y3HqaKpDr +Y5XY8EAC3w3E2EzQCrHdounHs/LlhEmp+Z3+Zzm4EDa6cD92gb07g8Vdh8R4 +P6RHsXt/ByMgNSwv3zHhlZ3GIkw+yvUBinm57zMnKZJWzQ/v+4VKTKqUWofO +5ONRwZrkcmMSDkv1H5eZy1ElldclOFrCu/FuUStlx1CoXP/9tkZDeHhFR6l9 +4BTmKP03z1Z8AhZrgy3KbYpR1aE9L/uKHgSlitzYi/LxA5sF9xIGuhn+VG/W +cUvJazemnors3OoNLbV8KxdZCZ640/JF8c7F0MEzu6a9twyT/S9f2bBOm+FY +kKCcW1CNancmmVXPgoON97iCw7XofqT9fP9NB5hkZhevTpbj3NIvd1iJehkW +k0axxsLc1+72mzW7ZqoXwoe77IocwooxYKnk/GQkHQr9Mzlvt5Wi0HRYL7GU +Scy8TZ+o551E3Zpgw72dLAiWqqlLnc/ivL5LGXzFLIZD6EW8QFfhH9wpzvc= + + "]]}, {}}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->{696.40234375, Automatic}, + Method->{}, + PlotRange->{{-4.657474896665808*^-7, + 7.482125726626727*^-7}, {-0.053020753652364125`, 5.217647318268259*^-16}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{3.726974690984702*^9, 3.726975060445325*^9, + 3.726976762456924*^9}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData["data"], "Input", + CellChangeTimes->{{3.726979094877021*^9, 3.726979095253227*^9}}], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.315646186976984`*^-7", ",", "5.217647318268259`*^-16"}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"1.3260077622520799`*^-9", ",", + RowBox[{"-", "0.00015696610274591903`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2.612631575800295`*^-9", ",", "8.815302700030917`*^-20"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"2.612631575800295`*^-9", ",", "8.815302700030917`*^-20"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"2.612631575800295`*^-9", ",", "8.815302700030917`*^-20"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"2.612631575800295`*^-9", ",", "8.815302700030917`*^-20"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"2.612631575800295`*^-9", ",", "8.815302700030917`*^-20"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"2.612631575800295`*^-9", ",", "8.815302700030917`*^-20"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"2.612631575800295`*^-9", ",", "8.815302700030917`*^-20"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"2.612631575800295`*^-9", ",", "8.815302700030917`*^-20"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"2.612631575800295`*^-9", ",", "8.815302700030917`*^-20"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"1.6081638689202357`*^-9", ",", + RowBox[{"-", "0.0004439671826722561`"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "4.9693431184003365`*^-9"}], ",", + RowBox[{"-", "0.0008879343653445094`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "4.315452196219088`*^-9"}], ",", + RowBox[{"-", "0.00015696610274591876`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.539349042904153`*^-9"}], ",", + "1.7285887445047713`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.539349042904153`*^-9"}], ",", + "1.7285887445047713`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.539349042904153`*^-9"}], ",", + "1.7285887445047713`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.539349042904153`*^-9"}], ",", + "1.7285887445047713`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.539349042904153`*^-9"}], ",", + "1.7285887445047713`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.539349042904153`*^-9"}], ",", + "1.7285887445047713`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.539349042904153`*^-9"}], ",", + "1.7285887445047713`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.7916945472475554`*^-9"}], ",", + RowBox[{"-", "0.000443967182672255`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "9.138225293927991`*^-9"}], ",", + RowBox[{"-", "0.002511457643934702`"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "7.2040403159533634`*^-9"}], ",", + RowBox[{"-", "0.002446859385198076`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2.9297754928920264`*^-7", ",", + RowBox[{"-", "0.0008879343653423082`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "3.2159060038479305`*^-7"}], ",", + RowBox[{"-", "0.00015696610274373965`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.4553328859788777`*^-8"}], ",", + "5.019063395674722`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.4553328859788777`*^-8"}], ",", + "5.019063395674722`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.4553328859788777`*^-8"}], ",", + "5.019063395674722`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.4553328859788777`*^-8"}], ",", + "5.019063395674722`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.4553328859788777`*^-8"}], ",", + "5.019063395674722`*^-18"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "4.1363294538097786`*^-9"}], ",", + RowBox[{"-", "0.00044396718267225566`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.1856855504787673`*^-7"}], ",", + RowBox[{"-", "0.0025114576439342565`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.688757088150941`*^-10"}], ",", + RowBox[{"-", "0.0069207634555340306`"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "5.225099734147228`*^-8"}], ",", + RowBox[{"-", "0.005022915287869318`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.556177017129362`*^-7"}], ",", + RowBox[{"-", "0.0024468593851977643`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "6.175622061507336`*^-9"}], ",", + RowBox[{"-", "0.000887934365344509`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "6.552144952952653`*^-7"}], ",", + RowBox[{"-", "0.00015696610273320457`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2.2212502804788352`*^-8", ",", "9.626322600942193`*^-18"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"2.2212502804788352`*^-8", ",", "9.626322600942193`*^-18"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"2.2212502804788352`*^-8", ",", "9.626322600942193`*^-18"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"7.444895100851676`*^-7", ",", + RowBox[{"-", "0.00044396718265510884`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.1127532976980045`*^-8"}], ",", + RowBox[{"-", "0.0025114576439347024`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"4.349331444169768`*^-9", ",", + RowBox[{"-", "0.0069207634555340306`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.1792651979473133`*^-8"}], ",", + RowBox[{"-", "0.014206949845512146`"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.600482296271808`*^-9"}], ",", + RowBox[{"-", "0.008774671897577285`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "4.747560376474189`*^-9"}], ",", + RowBox[{"-", "0.005022915287869411`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "7.490537781212835`*^-9"}], ",", + RowBox[{"-", "0.002446859385198074`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "4.973563790252575`*^-9"}], ",", + RowBox[{"-", "0.000887934365344509`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1.4628924358650872`*^-7", ",", + RowBox[{"-", "0.0001569661027458792`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.3622931099084123`*^-7"}], ",", + RowBox[{"-", "1.1124732560041525`*^-16"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "6.260048335726558`*^-9"}], ",", + RowBox[{"-", "0.00044396718267225463`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"2.5276433519123415`*^-9", ",", + RowBox[{"-", "0.0025114576439347076`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "5.68387713978327`*^-9"}], ",", + RowBox[{"-", "0.006920763455534026`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "4.909195572045071`*^-9"}], ",", + RowBox[{"-", "0.014206949845512162`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"5.6945386350816885`*^-9", ",", + RowBox[{"-", "0.02481852000585573`"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.861067821217865`*^-9"}], ",", + RowBox[{"-", "0.013599857800188015`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "9.124238947803689`*^-9"}], ",", + RowBox[{"-", "0.008533007961240346`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.1494022860168771`*^-8"}], ",", + RowBox[{"-", "0.004781251079137732`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "7.106460934549753`*^-9"}], ",", + RowBox[{"-", "0.002205194199166782`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "6.626369341316028`*^-10"}], ",", + RowBox[{"-", "0.0006462691426809715`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.10074089278936466`", ",", + RowBox[{"-", "0.0002978411768117297`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.000010260288068571858`", ",", + RowBox[{"-", "0.0022697923958177805`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.0157469343435309`*^-9"}], ",", + RowBox[{"-", "0.006679094344653997`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.5640041895837374`*^-8"}], ",", + RowBox[{"-", "0.013965279119893903`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "6.780945727660641`*^-9"}], ",", + RowBox[{"-", "0.0245768541230196`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.089350262542678`*^-8"}], ",", + RowBox[{"-", "0.03890808538164096`"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"1.3811889796955538`*^-8", ",", + RowBox[{"-", "0.018982301709061643`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.0586373528270682`*^-9"}], ",", + RowBox[{"-", "0.012474458404603489`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "7.731347372936172`*^-9"}], ",", + RowBox[{"-", "0.007407603472334263`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "3.0921805858591557`*^-9"}], ",", + RowBox[{"-", "0.0036558465741822824`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.24013754505478122`", ",", + RowBox[{"-", "0.0018159377507130862`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.24013754505478122`", ",", + RowBox[{"-", "0.0018159377507130862`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.531300021640806`*^-9"}], ",", + RowBox[{"-", "0.005710660961302542`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.00004863781010755126`", ",", + RowBox[{"-", "0.0128398811264842`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.634908130967842`*^-9"}], ",", + RowBox[{"-", "0.023451450964393106`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.0872270517051407`*^-6"}], ",", + RowBox[{"-", "0.0377826594543992`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "3.503241231280153`*^-8"}], ",", + RowBox[{"-", "0.05618963277167388`"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.706287627305839`*^-7"}], ",", + RowBox[{"-", "0.024646716392664695`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"9.609215416875182`*^-9", ",", + RowBox[{"-", "0.01658218895992212`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "4.734226183481763`*^-9"}], ",", + RowBox[{"-", "0.010074343659824776`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.3844954156207179`", ",", + RowBox[{"-", "0.005173286719953062`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.3844954156207179`", ",", + RowBox[{"-", "0.005173286719953062`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.3844954156207179`", ",", + RowBox[{"-", "0.005173286719953062`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.051246629311074`*^-8"}], ",", + RowBox[{"-", "0.011327700912501492`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"1.451306998709419`*^-9", ",", + RowBox[{"-", "0.021208301460945652`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.00003068645302372061`"}], ",", + RowBox[{"-", "0.03538256651496843`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.8154559891336987`*^-9"}], ",", + RowBox[{"-", "0.053789509252262065`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.208601914264258`*^-9"}], ",", + RowBox[{"-", "0.07659946149834662`"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.389443589229646`*^-8"}], ",", + RowBox[{"-", "0.030409486870058726`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "7.802963310606762`*^-10"}], ",", + RowBox[{"-", "0.020680624439028406`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.5289868696646415`", ",", + RowBox[{"-", "0.010802606157664627`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.5289868696646415`", ",", + RowBox[{"-", "0.010802606157664627`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.5289868696646415`", ",", + RowBox[{"-", "0.010802606157664627`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.5289868696646415`", ",", + RowBox[{"-", "0.010802606157664627`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.5289868696646415`", ",", + RowBox[{"-", "0.010802606157664627`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.0004167652656869`*^-8"}], ",", + RowBox[{"-", "0.032304409936716974`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "3.5518599158543633`*^-9"}], ",", + RowBox[{"-", "0.04998033704593724`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.000040683133170437036`", ",", + RowBox[{"-", "0.07263336853574809`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.260493129821022`*^-9"}], ",", + RowBox[{"-", "0.10015066500615295`"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "3.240948438891646`*^-9"}], ",", + RowBox[{"-", "0.036127556064117876`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.6720125645490241`", ",", + RowBox[{"-", "0.019043303158013385`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.6720125645490241`", ",", + RowBox[{"-", "0.019043303158013385`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.6720125645490241`", ",", + RowBox[{"-", "0.019043303158013385`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.6720125645490241`", ",", + RowBox[{"-", "0.019043303158013385`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.6720125645490241`", ",", + RowBox[{"-", "0.019043303158013385`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.8967575817662376`*^-9"}], ",", + RowBox[{"-", "0.030663186576372046`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "6.852132271643635`*^-9"}], ",", + RowBox[{"-", "0.046494076092732324`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"7.755204782620834`*^-9", ",", + RowBox[{"-", "0.06774508888871379`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.312036070036536`*^-9"}], ",", + RowBox[{"-", "0.09453148229161236`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.000052753007912593555`", ",", + RowBox[{"-", "0.12688526501259054`"}]}], "}"}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{3.726979096582165*^9}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"data2", "=", + RowBox[{"Flatten", "[", + RowBox[{"data", ",", "1"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"ListPlot", "[", + RowBox[{"data2", ",", + RowBox[{"PlotRange", "\[Rule]", "Full"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.7269792397406597`*^9, 3.726979292324873*^9}}], + +Cell[BoxData[ + GraphicsBox[{{}, {{}, + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.01388888888888889], + AbsoluteThickness[1.6], PointBox[CompressedData[" +1:eJzN0mtU03Ucx/GdBELMgQ1ockdADdKQmwTbf5vIpXQ60TYqLGBIiVwFkuGF +TcYGk1sCCl4A51EGIijiFJLvdwFKgiJeMhAvNMQUpJRLkIiUsHrSAx94OvXg +d/7nfX4P/q/zOT/rkGj/DW+QSCTBn+fllzRxt1iiEBGKAV3bqEsNtP97txtQ +tTqajQm6zDvr4W5bjAnsv0aLnU/s7r4hKdV65vlfd57nrYzmElNCZ6xamkal +Y0Wefn0nzxUej75sNrqPx7b1pDmBs8bf7MVLz+Iug4ahb3Le7GHQ/u0+8E4d +hzS+AAZHp315Ozy6W4q9YOmUJxTbKamGA08IML+95FD0rFB0lMf1cMpyiSLF +tD+lccYmdV4+LOQsn/JrSWOGLjBXAz+J8sPXdjza63bb73toTxuXwAuNr7Br +neHY9WRwkUz7hPwGmVnSYP1X831XDAZsw2EfTpr/7Ai4kf7yPh5ZDrXN42ox +rOqc9u/Ji6E4SDzgkWZ/fdH+R4znR+B+MDHlt7LcNFDbySPU3sYQ5BRGe1U/ +j9BB83EFEW1bOeUrIQ/pRfb6grtmvwCubNSm0on4y3fCkZu5JowHfVP/z8Tu +3j4f+8RloIwtl8SPibCG7bt5ku8CDNm034rwE4waMYGq2b+bnKraHuj6t9+g +Oa41QZ5CJIun38+JLNOTl/12wohRjh9bt+QcyVk+8kLtAf2a/ZiVb50OUNoR +yzU+4UTy+9s3ugNf4zvLzj99xsgVhjQ+HRdna7cEd6JJrFelE16IpN4HkRFv +egGd1TWDuLULx1QkgUmBF6hW6z1VCUTIjMt++HOlHwhYbI4oPw6Z8XMG5KkE +OBf9WlRiEIKKmszag006sCdREr5ykTeaxT44s6CllsHNmmc+KHZG6jFbVpy4 +l6i6lZQytyAEn4yMBLHj5oB1YPS59M+24u2j4aYmrRzIrWrVvVGYgXV3o2V1 +lnSQKi42VNgX4nBjn1NTqC+4ekprGvoPo27g0+P2ZWzC2Ou9GmpMLhoG+l2e +qLSGlCyDLa4Z6airWrzx031MGM/ZFh7N24EkSnXfhWx7MFC6Vt0ZjMS1Cp9v +r59rY/RsJ3MKVOv/0cLRkx58sIPPr1J+0g/dgmTCJIosnMnoOrK4onWFDIN+ +y34UZmwGOT7gqZhRgCnXyBf30ath7fWI44yAw5i0nhJ1tS0EYm6y3HqaKpDr +Y5XY8EAC3w3E2EzQCrHdounHs/LlhEmp+Z3+Zzm4EDa6cD92gb07g8Vdh8R4 +P6RHsXt/ByMgNSwv3zHhlZ3GIkw+yvUBinm57zMnKZJWzQ/v+4VKTKqUWofO +5ONRwZrkcmMSDkv1H5eZy1ElldclOFrCu/FuUStlx1CoXP/9tkZDeHhFR6l9 +4BTmKP03z1Z8AhZrgy3KbYpR1aE9L/uKHgSlitzYi/LxA5sF9xIGuhn+VG/W +cUvJazemnors3OoNLbV8KxdZCZ640/JF8c7F0MEzu6a9twyT/S9f2bBOm+FY +kKCcW1CNancmmVXPgoON97iCw7XofqT9fP9NB5hkZhevTpbj3NIvd1iJehkW +k0axxsLc1+72mzW7ZqoXwoe77IocwooxYKnk/GQkHQr9Mzlvt5Wi0HRYL7GU +Scy8TZ+o551E3Zpgw72dLAiWqqlLnc/ivL5LGXzFLIZD6EW8QFfhH9wpzvc= + + "]]}, {}}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->{622.33984375, Automatic}, + Method->{}, + PlotRange->{{-0.00003068645302372061, + 0.6720125645490241}, {-0.12688526501259054`, 5.217647318268259*^-16}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.726979244417837*^9, 3.726979249637493*^9}, + 3.7269792933576097`*^9}] +}, Open ]] +}, +WindowSize->{2560, 1315}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +FrontEndVersion->"10.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (December 4, \ +2014)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[CellGroupData[{ +Cell[580, 22, 9421, 240, 335, "Input"], +Cell[10004, 264, 877, 17, 24, "Message"], +Cell[10884, 283, 9901, 175, 657, "Output"] +}, Open ]], +Cell[20800, 461, 94, 1, 28, "Input"], +Cell[CellGroupData[{ +Cell[20919, 466, 9410, 253, 335, "Input"], +Cell[30332, 721, 843, 15, 44, "Message"], +Cell[31178, 738, 1576, 25, 52, "Message"], +Cell[32757, 765, 841, 15, 44, "Message"], +Cell[33601, 782, 583, 12, 24, "Message"], +Cell[34187, 796, 627, 12, 24, "Message"], +Cell[34817, 810, 870, 16, 24, "Message"], +Cell[35690, 828, 627, 12, 24, "Message"], +Cell[36320, 842, 870, 16, 24, "Message"], +Cell[37193, 860, 627, 12, 24, "Message"], +Cell[37823, 874, 584, 12, 24, "Message"], +Cell[38410, 888, 913, 17, 24, "Message"], +Cell[39326, 907, 582, 12, 24, "Message"], +Cell[39911, 921, 744, 14, 24, "Message"], +Cell[40658, 937, 744, 14, 24, "Message"], +Cell[41405, 953, 744, 14, 24, "Message"], +Cell[42152, 969, 584, 12, 24, "Message"], +Cell[42739, 983, 552, 11, 24, "Message"], +Cell[43294, 996, 550, 11, 24, "Message"], +Cell[43847, 1009, 552, 11, 24, "Message"], +Cell[44402, 1022, 585, 12, 24, "Message"], +Cell[44990, 1036, 1001, 19, 54, "Message"], +Cell[45994, 1057, 1001, 19, 54, "Message"], +Cell[46998, 1078, 1001, 19, 54, "Message"], +Cell[48002, 1099, 584, 12, 24, "Message"], +Cell[48589, 1113, 572, 11, 24, "Message"], +Cell[49164, 1126, 572, 11, 24, "Message"], +Cell[49739, 1139, 572, 11, 24, "Message"], +Cell[50314, 1152, 585, 12, 24, "Message"], +Cell[50902, 1166, 631, 12, 24, "Message"], +Cell[51536, 1180, 632, 12, 24, "Message"], +Cell[52171, 1194, 632, 12, 24, "Message"], +Cell[52806, 1208, 583, 12, 24, "Message"], +Cell[53392, 1222, 2736, 57, 446, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[56165, 1284, 96, 1, 28, "Input"], +Cell[56264, 1287, 16955, 455, 321, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[73256, 1747, 334, 8, 46, "Input"], +Cell[73593, 1757, 2738, 57, 391, "Output"] +}, Open ]] +} +] +*) +