-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcovid19_util.py
249 lines (210 loc) · 7.91 KB
/
covid19_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Builtins
import math
import colorsys
import warnings
import hashlib
# Third party modules
from pandas.plotting import register_matplotlib_converters
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
from IPython.display import display, Markdown
import numpy as np
import scipy.stats
warnings.filterwarnings('ignore') # ignore a deprecation warning in IPython Widgets
register_matplotlib_converters() # For formatting pandas dates
light_grey = (.95, .95, .95, 1) # Plot background color
matplotlib.rcParams['figure.figsize'] = (14, 8) # Default size of all figures
matplotlib.rcParams['axes.facecolor'] = light_grey # Default background color of all graph areas
matplotlib.rcParams['figure.facecolor'] = light_grey # Default background color of all figure borders
cm = plt.cm.get_cmap('nipy_spectral') # This colormap is used for the colors of the plot lines
# Where to get the data. There have been some issues with the data quality lately.
# For the most recent data, use branch 'master'.
# For stable March 13 data, use 'c2f5b63f76367505364388f5a189d1012e49e63e'
branch = "master"
base_url = f"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/{branch}/" + \
"csse_covid_19_data/csse_covid_19_time_series/"
data_urls = {
"confirmed": "time_series_covid19_confirmed_global.csv",
"deaths": "time_series_covid19_deaths_global.csv",
"confirmed_us_states": "time_series_covid19_confirmed_US.csv",
"deaths_us_states": "time_series_covid19_deaths_US.csv",
# No longer being updated: "recovered": "time_series_19-covid-Recovered.csv"
}
continent_codes = {
"AF": "Africa",
"AN": "Antarctica",
"AS": "Asia",
"EU": "Europe",
"NA": "North America",
"OC": "Oceania",
"SA": "South America"
}
normalized_names = {
"Timor Leste": "East Timor",
"Timor-Leste": "East Timor",
"Vatican": "Vatican City",
"Democratic Republic of the Congo": "Congo (Kinshasa)",
"Republic of the Congo": "Congo (Brazzaville)",
"Cabo Verde": "Cape Verde",
"Palestinian Territory": "Palestine",
"Republic of Korea": "South Korea",
"Holy See": "Vatican City",
"Iran (Islamic Republic of)": "Iran",
"Viet Nam": "Vietnam",
"Taipei and environs": "Taiwan",
"Republic of Moldova": "Moldova",
"Russian Federaration": "Russia",
"Korea, North": "North Korea",
"Korea, South": "South Korea",
"Taiwan*": "Taiwan",
"occupied Palestinian territory": "Palestine",
"West Bank and Gaza": "Palestine",
"Bahamas, The": "Bahamas",
"Cote d'Ivoire": "Ivory Coast",
"Gambia, The": "Gambia",
"US": "United States",
"Cabo Verde": "Cape Verde",
"Burma": "Myanmar",
}
# Truncate (drop after given number of decimals instead of rounding)
def truncate(n, decimals, as_int=True):
p = int(10 ** decimals)
if decimals > 0:
result = math.trunc(p * n) / p
else:
result = n
if as_int or decimals == 0:
result = int(result)
else:
result = round(result, decimals) # sometimes the result is still off due to float errors
return result
# Format large numbers with k for thousands, M for millions, B for billions
def kmb_number_format(n, digits=3, as_int=True):
if n <= 0:
return 0
decimals = int(digits - (math.log(n) / math.log(10)) % 3)
if n < 1e3:
div = 1
suffix = ""
as_int = True
elif n < 1e6:
div = 1e3
suffix = "K"
elif n < 1e9:
div = 1e6
suffix = "M"
else:
div = 1e9
suffix = "B"
return f"{truncate(n/div, decimals, as_int)}{suffix}"
def set_plot_style():
plt.minorticks_off()
plt.gca().tick_params(which="major", color=light_grey)
for spine in plt.gca().spines.values():
spine.set_visible(False)
plt.grid(ls=":")
# Convenience function for labelling the y-axis
def set_y_axis_format(ymax, log=True):
power = int(math.ceil(math.log(ymax) / math.log(10)))
if power % 1 > 0.69897:
ceil = 1.03 * 10 ** power
else:
ceil = 1.03 * 10 ** (power - 0.30103)
if log:
plt.ylim(0.98, ceil)
plt.yscale("log", base=10)
plt.yticks([float(10 ** x) for x in range(0, power + 1)])
plt.gca().get_yaxis().set_major_formatter(
matplotlib.ticker.FuncFormatter(lambda x, p: kmb_number_format(x)))
set_plot_style()
def normalize_to_target_product(dist, target):
ratio = np.product(dist) / target
ratio = ratio ** (1 / len(dist))
return dist / ratio
def death_chance_per_day(cfr, s=0.9, mu=0, sigma=1, length=20, do_plot=False):
# Approximate survival and death odds
death_chance = scipy.stats.weibull_min.pdf(np.linspace(0, length-1, length), c=s, loc=mu, scale=sigma)
# Approximation is slightly off, compensate
if cfr > 0:
death_chance = death_chance / sum(death_chance) * cfr
survive_chance_per_day = 1 - death_chance
survive_chance_per_day = normalize_to_target_product(survive_chance_per_day, 1 - cfr)
death_chance = 1 - survive_chance_per_day
else:
survive_chance_per_day = 1 - death_chance
alive = np.product(survive_chance_per_day)
if do_plot:
display(Markdown(f"Input CFR: {cfr:.2%}. Model result: {alive:.2%} of being alive after {length} days"))
plt.plot(100 * death_chance)
plt.title("Modelled daily fatality rate, if infected with Covid-19", fontsize=16)
plt.xlabel("Day")
plt.ylabel("Chance")
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter())
set_plot_style()
plt.show()
plt.plot(100 * np.cumprod(survive_chance_per_day))
plt.title("Modelled survival probability, n days after contracting Covid-19", fontsize=16)
plt.xlabel("Day")
plt.ylabel("Chance")
plt.ylim(0, 102)
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter())
set_plot_style()
plt.show()
else:
return death_chance
def logistic_func(x, L, k, x0):
warnings.filterwarnings("error")
try:
out = L / (1 + np.exp(-k * (x - x0)))
return out
except RuntimeWarning as e:
# Ignore these warnings, they will only happen when the curve fit parameters are out of bounds
print(e)
return x
def get_pie_label(pct):
if pct > 1.5:
return f"{pct / 100:1.1%}"
else:
return ""
def string_to_color(name, offset=4):
fixed_colors = {
"Netherlands": (1.0, 0.4, 0.0),
"Germany": (0, 0.5, 0.7),
"Italy": (0.2, 0.75, 0.1),
"India": (0.1, 0.45, 0.25),
"Mongolia": (0, 0.4, 0.7),
"United States": (0.0, 0.7, 1.0),
"United Kingdom": (0.6, 0.0, 0.3),
"Russia": (0.6, 0.4, 0.0),
"Spain": (0.92, 0.92, 0.0),
"China": (0.7, 0.3, 0.3),
"All except China": (0.2, 0.2, 0.2),
"World": (0, 0, 0)
}
if name in fixed_colors:
return fixed_colors[name]
else:
hue = 0
sat = 0.5
val = 0.5
name_hash = int(hashlib.md5(name[::3].encode()).hexdigest(), 16)
b16 = 1 << 16
h = (name_hash % b16) / b16
s = (name_hash % 256) / 256
v = (name_hash % (1 << 24)) / (1 << 24)
c = colorsys.hsv_to_rgb(hue + h,
sat + 0.5 * s,
val + 0.5 * v)
return c
def gauss(n=11, sigma=1):
r = range(-int(n/2), int(n/2)+1)
return [1 / (sigma * math.sqrt(2*math.pi)) * math.exp(-float(x)**2/(2*sigma**2)) for x in r]
def half_gauss(n=6, sigma=1, ascending=True):
g = gauss(2*n+1, sigma)
g = g[:n+1]
g = g + n * [0]
s = sum(g)
if not ascending:
g = g[::-1]
return [x/s for x in g]