forked from qyuan7/RNN_RL_molecule
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_prior.py
76 lines (58 loc) · 2.55 KB
/
train_prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!usr/bin/env python
import torch
from torch.utils.data import DataLoader
import pickle
from rdkit import Chem, rdBase
from tqdm import tqdm
from data_structs import MolData, Vocabulary
from model import RNN
from utils import Variable, decrease_learning_rate
rdBase.DisableLog('rdApp.error')
def pretrain(restore_from=None):
"Train the Prior RNN"
# Reads vocabulary from a file
voc = Vocabulary(init_from_file="data/Voc")
# Create a Dataset from a SMILES file
moldata = MolData("data/ChEMBL_filtered", voc)
data = DataLoader(moldata, batch_size=128, shuffle=True, drop_last=True,
collate_fn=MolData.collate_fn)
Prior = RNN(voc)
# Can restore from a saved RNN
if restore_from:
Prior.rnn.load_state_dict(torch.loag(restore_from))
optimizer = torch.optim.Adam(Prior.rnn.parameters(), lr=0.001)
for epoch in range(1, 6):
# When training on a few million compounds, this model converges
# in a few of epochs or even faster. If model sized is increased
# its probably a good idea to check loss against an external set of
# validation SMILES to make sure we dont overfit too much.
for step, batch in tqdm(enumerate(data), total=len(data)):
# Sample from Dataloader
seqs = batch.long()
# Calculate loss
log_p, _ = Prior.likelihood(seqs)
loss = - log_p.mean()
# Calculate gradients and take a step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Every 500 steps we decrease learning rate and print some information
if step % 500 == 0 and step != 0:
decrease_learning_rate(optimizer, decrease_by=0.03)
tqdm.write('*'*50)
tqdm.write("Epoch {:3d} step {:3d} loss: {:5.2f}\n".format(epoch, step, loss.data[0]))
seqs, likelihood, _ = Prior.sample(128)
valid = 0
for i, seq in enumerate(seqs.cpu().numpy()):
smile = voc.decode(seq)
if Chem.MolFromSmiles(smile):
valid += 1
if i < 5:
tqdm.write(smile)
tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs)))
tqdm.write('*'*50 + '\n')
torch.save(Prior.rnn.state_dict(), 'data/Prior_local.ckpt')
# Save the prior
torch.save(Prior.rnn.state_dict(), 'data/Prior_local.ckpt')
if __name__ == '__main__':
pretrain()