-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
executable file
·344 lines (268 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import time
import evaluate
import torch
from datasets.iterable_dataset import IterableDataset
from ..models.progressive import get_stacking_scheduler
from .copied import AdamWScale
from .lion import Lion
from .logging import Averager
from .sophia import SophiaG
def maybe_save_checkpoint(accelerator, args):
if args.debug:
return
if (
args.seconds_counter > args.budget * 3600
or args.seconds_counter >= args.every_seconds * args.check_cou
):
args.check_cou += 1
output_dir = f"checkpoint-{args.mode}-{args.seconds_counter}"
accelerator.save_state(output_dir=output_dir)
def maybe_eval_predict(model, dataloader, logger, args, tokenizer):
if (
args.seconds_counter > args.budget * 3600
or args.seconds_counter >= args.every_seconds * args.eval_cou
):
args.eval_cou += 1
model.eval()
if args.stacking.typ == "drop":
model.set_active_layers(args.stacking.num_layers_to_add)
with torch.no_grad():
eval(model, dataloader, logger, args, tokenizer)
if args.mode == "ft":
predict(model, dataloader, logger, args, tokenizer)
args.last_log = time.time()
model.train()
def maybe_logging(averager, args, model, optimizer, logger):
if args.current_train_step % args.logging.every_steps == 0:
stats = extra_stats(args, model, optimizer)
seconds_per_step = (time.time() - args.last_log) / args.logging.every_steps
stats["seconds_per_step"] = seconds_per_step
stats["real_step"] = args.current_train_step
stats["seconds_counter"] = args.seconds_counter
stats["hours_counter"] = args.seconds_counter / 3600
stats["hours_since_start"] = (time.time() - args.start_time) / 3600
averager.update(stats)
averaged_stats = averager.average()
logger.log_stats(
stats=averaged_stats,
step=int(args.fake_step),
args=args,
prefix=args.logging.prefix + "train/",
)
args.last_log = time.time()
def maybe_grad_clip_and_grad_calc(accelerator, model, args):
grad_l2 = None
if args.optim.grad_clip > 0:
grad_l2 = accelerator.clip_grad_norm_(
parameters=model.parameters(),
max_norm=args.optim.grad_clip,
norm_type=2,
)
if args.logging.grad_l2:
if grad_l2 is None:
grad_l2 = (
sum(
p.grad.detach().data.norm(2).item() ** 2
for p in model.parameters()
if p.grad is not None
)
** 0.5
)
return {"grad_l2": grad_l2}
else:
return {}
def extra_stats(args, model, optimizer):
stats = {}
if args.logging.weights_l2:
weights_l2 = (
sum(p.detach().norm(2).item() ** 2 for p in model.parameters()) ** 0.5
)
stats["weights_l2"] = weights_l2
cur_lr = optimizer.param_groups[0]["lr"]
stats["lr"] = cur_lr
return stats
def forward(model, batch, calc_acc=False):
stats = {}
outputs = model(**batch)
stats["loss"] = outputs.loss.detach().float().item()
combined_loss = outputs.loss
if calc_acc:
correct = (outputs.logits.argmax(-1) == batch["labels"]).sum().item()
accuracy = correct / batch["labels"].numel()
stats["accuracy"] = accuracy
return combined_loss, stats
def eval(model, dataloader, logger, args, tokenizer):
args.last_log = time.time()
averager = Averager()
for batch_id, batch in enumerate(dataloader, start=1):
if batch_id == args.eval.corrected_steps * args.optim.grad_acc:
break
_, stats = forward(model, batch, calc_acc=True)
averager.update(stats)
averager.update({"time": time.time() - args.last_log})
averaged_stats = averager.average()
averaged_stats["num_active_layers"] = model.get_num_active_layers()
logger.log_stats(
stats=averaged_stats,
args=args,
step=int(args.fake_step),
prefix=args.logging.prefix + "eval/",
)
def predict(model, dataloader, logger, args, tokenizer):
args.last_log = time.time()
metric = evaluate.load("rouge")
samples_seen = 0
def decode(preds):
preds[preds == -100] = tokenizer.pad_token_id
preds = tokenizer.batch_decode(
preds, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
preds = [pred.strip() for pred in preds]
return preds
for step, batch in enumerate(dataloader):
predictions = model.generate(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
max_length=args.data.max_target_len,
generation_config=model.generation_config,
)
predictions = decode(predictions)
references = decode(batch["labels"])
# If we are in a multiprocess environment, the last batch has duplicates
if step == len(dataloader) - 1:
predictions = predictions[: len(dataloader.dataset) - samples_seen]
references = references[: len(dataloader.dataset) - samples_seen]
else:
samples_seen += len(references)
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute(use_stemmer=True, use_aggregator=False)
rougeL = sum(eval_metric["rougeL"]) * 100 / len(eval_metric["rougeL"])
logger.log_stats(
stats={
"rougeL": rougeL,
"time": time.time() - args.last_log,
"num_active_layers": model.get_num_active_layers(),
},
args=args,
step=int(args.fake_step),
prefix=args.logging.prefix + "test/",
)
def _get_fake_step_seconds(seconds_elapsed, seconds_budget, num_training_steps):
if seconds_elapsed == 0:
fake_step = 0
else:
fake_step = int(seconds_elapsed / seconds_budget * num_training_steps)
return fake_step
NUM_LAYERS_AND_BATCH_TO_TIME_T5 = {
144: {
1: 0.129,
2: 0.209,
3: 0.291,
4: 0.373,
5: 0.455,
6: 0.538,
7: 0.619,
8: 0.703,
9: 0.783,
10: 0.865,
11: 0.947,
12: 1.031,
},
}
def get_time_per_step(batch_size: int, num_active_layers: int) -> float:
return NUM_LAYERS_AND_BATCH_TO_TIME_T5[batch_size][num_active_layers]
def get_optimizer_time(optimizer, args):
assert args.stacking.typ == "none"
if isinstance(optimizer.optimizer, SophiaG):
return 1.156
elif isinstance(optimizer.optimizer, Lion):
return 1.043
elif isinstance(optimizer.optimizer, AdamWScale):
return 1.031
else:
raise NotImplementedError
def train(
model,
train_dataloader,
test_dataloader,
accelerator,
lr_scheduler,
optimizer,
logger,
args,
tokenizer,
):
model.train()
train_averager = Averager()
stacking_scheduler = get_stacking_scheduler(
model=model,
optimizer=optimizer,
num_active_layers=args.stacking.num_initial_layers,
num_layers_to_add=args.stacking.num_layers_to_add,
num_train_steps=args.optim.total_steps,
typ=args.stacking.typ,
step_fractions=args.stacking.step_fractions,
doubling=args.stacking.doubling,
seconds_budget=args.budget * 3600,
gamma_factor=args.stacking.gamma_factor,
)
sophia_update, sophia_batches = False, 0
while args.seconds_counter <= args.budget * 3600:
if isinstance(train_dataloader.dataset, IterableDataset):
train_dataloader.dataset.set_epoch(args.current_epoch)
optimizer.zero_grad(set_to_none=True)
for batch_id, batch in enumerate(train_dataloader, start=1):
if args.seconds_counter > args.budget * 3600:
break
if sophia_update:
outputs = model(**batch)
samp_dist = torch.distributions.Categorical(logits=outputs.logits)
y_sample = samp_dist.sample()
loss = torch.nn.CrossEntropyLoss(ignore_index=-100)(
outputs.logits.view(-1, outputs.logits.size(-1)), y_sample.view(-1)
)
accelerator.backward(loss / args.optim.grad_acc)
sophia_batches += 1
if sophia_batches == args.optim.grad_acc:
maybe_grad_clip_and_grad_calc(accelerator, model, args)
optimizer.optimizer.update_hessian()
optimizer.zero_grad(set_to_none=True)
sophia_update, sophia_batches = False, 0
continue
loss, stats = forward(model, batch)
accelerator.backward(loss / args.optim.grad_acc)
train_averager.update(stats)
if batch_id % args.optim.grad_acc == 0:
stats = maybe_grad_clip_and_grad_calc(accelerator, model, args)
train_averager.update(stats)
train_averager.update(
{"num_active_layers": model.get_num_active_layers()}
)
optimizer.step()
lr_scheduler.step(args.fake_step)
stacking_scheduler.step(args.seconds_counter)
optimizer.zero_grad(set_to_none=True)
maybe_logging(train_averager, args, model, optimizer, logger)
maybe_save_checkpoint(accelerator, args)
maybe_eval_predict(model, test_dataloader, logger, args, tokenizer)
if (
isinstance(optimizer.optimizer, SophiaG)
and args.current_train_step % args.sophia_freq == 0
):
sophia_update = True
args.current_train_step += 1
if args.stacking.typ == "none":
args.seconds_counter += get_optimizer_time(optimizer, args)
else:
args.seconds_counter += get_time_per_step(
args.optim.batch_size, model.get_num_active_layers()
)
args.fake_step = _get_fake_step_seconds(
args.seconds_counter, args.budget * 3600, args.optim.total_steps
)
args.current_epoch += 1
maybe_save_checkpoint(accelerator, args)
maybe_eval_predict(model, test_dataloader, logger, args, tokenizer)