-
Notifications
You must be signed in to change notification settings - Fork 291
/
demo_compact.py
30 lines (27 loc) · 1.03 KB
/
demo_compact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import scattertext as st
df = st.SampleCorpora.ConventionData2012.get_data().assign(
parse=lambda df: df.text.apply(st.whitespace_nlp_with_sentences)
)
corpus = st.CorpusFromParsedDocuments(
df, category_col='party', parsed_col='parse'
).build().get_unigram_corpus().compact(st.AssociationCompactor(2000))
html = st.produce_scattertext_explorer(
corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
minimum_term_frequency=0,
pmi_threshold_coefficient=0,
width_in_pixels=1000,
metadata=corpus.get_df()['speaker'],
transform=st.Scalers.dense_rank,
max_overlapping=3,
include_gradient=True,
left_gradient_term='More Republican',
right_gradient_term='More Democratic',
middle_gradient_term='Metric: Dense Rank Difference',
d3_scale_chromatic_url='scattertext/data/viz/scripts/d3-scale-chromatic.v1.min.js',
d3_url='scattertext/data/viz/scripts/d3.min.js'
)
open('./demo_compact.html', 'w').write(html)
print('open ./demo_compact.html in Chrome')