-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
62 lines (46 loc) · 1.86 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from flask import Flask, render_template, url_for, request, jsonify
import numpy as np
import pickle
from twilio.twiml.messaging_response import MessagingResponse
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import LinearSVC
import pandas as pd
import numpy as np
app = Flask(__name__)
pipe = pickle.load(open("svc_pipeline(1)", "rb"))
@app.route("/")
def home():
return jsonify({"message": "Hello World"})
@app.route("/check",methods=['POST'])
def determine():
input_vector = np.zeros(len(symptoms_dict))
symp = []
p=['hi','hey','hola','heya','howdy','hello','heyy','hey','hi']
x = request.form.get('Body')
if x.lower() in p:
txt="Hello Here's Your Precaution Bot at your service!\nTo get started enter your symptoms so that I can recommend you some precautions that may help you feel better,In the mean time also consult your doctor \nso let's get started 🩺"
resp = MessagingResponse()
resp.message(txt)
return str(resp)
else:
df=pd.read_csv('precuation.csv')
l=[]
symptoms=x
print(type(symptoms))
x=str(symptoms)
x=x.lower()
y=(pipe.predict([x])[0])
df=pd.read_csv('precuation.csv')
x=df[df['Disease']==f'{y}']
for i in range(1,5):
l.append(x[f'Precaution_{i}'].values[0])
txt=f"I think you might be having {y}\n Hence follow these precuations\n 1) {l[0]}\n 2 {l[1]}\n 3 {l[2]} \n 4 {l[3]} \n Hoping you get well soon 😀 "
print(y)
resp = MessagingResponse()
resp.message(txt)
return str(resp)
if __name__ == "__main__":
app.debug = True
app.run(host="0.0.0.0", port=5000)