-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
323 lines (264 loc) · 12.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import copy
import torch
import random
import argparse
import numpy as np
from os import path
from torch import nn
from tqdm import tqdm
from PIL import ImageFilter
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, ConcatDataset, SubsetRandomSampler
from sklearn.cluster import KMeans
from torch.nn import functional as F
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics.cluster import normalized_mutual_info_score as NMI
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
class GaussianBlur(object):
"""Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709"""
def __init__(self, sigma=[.1, 2.]):
self.sigma = sigma
def __call__(self, x):
sigma = random.uniform(self.sigma[0], self.sigma[1])
x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
return x
class TwoCropsTransform:
"""Take two random crops of one image as the query and key."""
def __init__(self, base_transform):
self.base_transform = base_transform
def __call__(self, x):
q = self.base_transform(x)
k = self.base_transform(x)
return [q, k]
def construct_workers(Nets, M, p, ground_truth):
#M: number of clients/workers
setup_seed(20)
if p == 1:
for i in range(M):
Nets[f'd_{i}'] = np.where(ground_truth == i)[0]
print(torch.bincount(ground_truth[Nets[f'd_{i}']]), len(ground_truth[Nets[f'd_{i}']]))
else:
n = int(ground_truth.shape[0] / M) #the number of samples in each client
idx_rest = np.zeros(0, int)
for i in range(M): #assign n*p samples from the single cluster to each client separately
Nets[f'd_{i}'] = np.where(ground_truth == i)[0][ : round(n * p)]
d_i_rest = np.where(ground_truth == i)[0][round(n * p) : ]
idx_rest = np.concatenate((idx_rest, d_i_rest))
shuffle_idx = torch.randperm(idx_rest.shape[0]) #assign n*(1-p) samples from several clusters to each client evenly
idx_rest_shuffled = idx_rest[shuffle_idx]
assert round(n * p) + round(n * (1-p)) == n
idx1, idx2 = 0, round(n * (1-p))
for i in range(M):
Nets[f'd_{i}'] = np.concatenate((Nets[f'd_{i}'], idx_rest_shuffled[idx1 : idx2]))
idx1 = idx2
idx2 += round(n * (1-p))
assert np.unique(Nets[f'd_{i}']).shape[0] == n
print(torch.bincount(ground_truth[Nets[f'd_{i}']]), len(ground_truth[Nets[f'd_{i}']]))
def get_dataloaders(args):
train_dataset = MNIST(root = args.data_root, train = True, download = True, transform = transforms.ToTensor())
test_dataset = MNIST(root = args.data_root, train = False, download = True, transform = transforms.ToTensor())
ground_truth_all = torch.cat((train_dataset.targets, test_dataset.targets))
print(f'label distribution: {torch.bincount(ground_truth_all)}')
n_train = len(train_dataset)
n_test = len(test_dataset)
n = n_train + n_test
train_dataset.targets = torch.arange(0, n_train)#index of images and labels pseudo_labels[ : n_train]
test_dataset.targets = torch.arange(n_train, n)# pseudo_labels[n_train : ]
combined_dataset = ConcatDataset([train_dataset, test_dataset])
train_transforms = transforms.Compose([
transforms.RandomResizedCrop(28, scale=(0.5, 1.)),
transforms.RandomRotation(10),
transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5),
transforms.ToTensor()
])
train_dataset_aug = MNIST(root = args.data_root, train = True, download = True, transform = TwoCropsTransform(train_transforms))
test_dataset_aug = MNIST(root = args.data_root, train = False, download = True, transform = TwoCropsTransform(train_transforms))
combined_dataset_aug = ConcatDataset([train_dataset_aug, test_dataset_aug])
Nets = locals()
construct_workers(Nets, M = args.k, p = args.p, ground_truth = ground_truth_all)
for i in range(args.k):
sampler_i = SubsetRandomSampler(Nets[f'd_{i}'])
Nets[f'pretrain_loader_{i}'] = DataLoader(combined_dataset_aug, args.batch_size, sampler = sampler_i,
num_workers = args.num_workers, pin_memory = True)
Nets[f'train_loader_{i}'] = DataLoader(combined_dataset, args.batch_size, sampler = sampler_i,
num_workers = args.num_workers, pin_memory = True)
test_loader = DataLoader(combined_dataset, args.batch_size, shuffle = False, num_workers = args.num_workers)
return Nets, test_loader, ground_truth_all, n
class projection_MLP(nn.Module):
def __init__(self, in_dim, hidden_dim, out_dim, num_layers=2):
super().__init__()
self.num_layers = num_layers
self.layer1 = nn.Sequential(
nn.Linear(in_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(inplace=True)
)
self.layer2 = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(inplace=True)
)
self.layer3 = nn.Sequential(
nn.Linear(hidden_dim, out_dim),
nn.BatchNorm1d(out_dim, affine=False)
)
def forward(self, x):
if self.num_layers == 2:
x = self.layer1(x)
x = self.layer3(x)
elif self.num_layers == 3:
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
class prediction_MLP(nn.Module):
def __init__(self, in_dim, hidden_dim):
super().__init__()
out_dim = in_dim
self.layer1 = nn.Sequential(
nn.Linear(in_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(inplace=True)
)
self.layer2 = nn.Linear(hidden_dim, out_dim)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
return x
class SimSiam(nn.Module):
def __init__(self, args):
super().__init__()
#conv_block: 1*28*28 -> 64*14*14 -> 128*7*7 -> 256*3*3
self.backbone = nn.Sequential(
nn.Conv2d(1, 64, 4, 2, 1),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2),
nn.Conv2d(64, 128, 4, 2, 1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2),
nn.Conv2d(128, 256, 4, 2, 1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2),
)
self.projector = projection_MLP(256 * 3 * 3, args.proj_hidden_dim, args.latent_dim, args.num_proj_layers)
self.predictor = prediction_MLP(args.latent_dim, args.pre_hidden_dim)
def forward(self, x):
z = self.projector(self.backbone(x).view(-1, 256 * 3 * 3))
p = self.predictor(z)
return z, p
def asymmetric_loss(p, z): #sample-level
z = z.detach() # stop gradient
return - F.cosine_similarity(p, z, dim=-1).mean()
def symmetric_loss(p, z): #cluster-level
z = z.detach() # stop gradient
#ipdb.set_trace()
z_norm, p_norm = F.normalize(z), F.normalize(p)
return - torch.mm(z_norm, p_norm.T).mean()
def get_centroids(latent_z, nClusters):
kmeans = KMeans(n_clusters = nClusters).fit(latent_z)
return kmeans.cluster_centers_
def get_global_centroids(args, Nets, device):
local_latent_z_ls = []
local_centroids_ls = []
for i in range(args.k):
Nets[f'model_{i}'].eval()
latent_z = []
with torch.no_grad():
for x, _ in Nets[f'train_loader_{i}']:
x = x.to(device)
z = F.normalize(Nets[f'model_{i}'](x)[0]) #check here
latent_z.append(z)
latent_z = torch.cat(latent_z).cpu().numpy()
local_latent_z_ls.append(latent_z)
local_centroids = get_centroids(latent_z, args.k)
local_centroids_ls.append(local_centroids)
local_centroids_all = np.concatenate(local_centroids_ls) ##check here
global_centroids = get_centroids(local_centroids_all, args.k)
return global_centroids
def cluster_acc(Y_pred, Y):
from scipy.optimize import linear_sum_assignment
assert Y_pred.size == Y.size
D = max(Y_pred.max(), Y.max())+1
w = np.zeros((D,D), dtype=np.int64)
for i in range(Y_pred.size):
w[Y_pred[i], Y[i]] += 1
ind = linear_sum_assignment(w.max() - w)
return sum([w[i,j] for i,j in zip(ind[0], ind[1])])*1.0/Y_pred.size, w
def clustering_by_cosine_similarity(test_dataloader, global_model, global_centroids, ground_truth, device):
global_model.eval()
latent_z = []
with torch.no_grad():
for x, _ in test_dataloader:
x = x.to(device)
z = F.normalize(global_model(x)[0])
latent_z.append(z)
latent_z_all = torch.cat(latent_z, 0).cpu().numpy()
pred = cosine_similarity(latent_z_all, global_centroids).argmax(1)
acc, nmi = cluster_acc(pred, ground_truth)[0], NMI(ground_truth, pred)
print(f'acc: {acc: .4f} | nmi: {nmi: .4f}')
return torch.from_numpy(pred), acc, nmi
def pretrain(Nets, args, test_loader, ground_truth_all, n, trial_dir, device):
global_model = SimSiam(args).to(device)
save_path = path.join(trial_dir, f"model_pretrain_{int(args.p / 0.25)}.pt")
if not path.exists(save_path):
for i in range(args.k):
Nets[f'model_{i}'] = SimSiam(args).to(device)
Nets[f'optim_{i}'] = torch.optim.Adam(Nets[f'model_{i}'].parameters(), lr = args.lr)
print(f'pretraining on: {device}')
loss_ema = None
for epoch in range(100):
global_model.eval()
global_w = global_model.state_dict()
for i in range(args.k):
if epoch > 0:
Nets[f'model_{i}'].load_state_dict(copy.deepcopy(global_w)) ##check here
Nets[f'model_{i}'].train()
pbar = tqdm(Nets[f'pretrain_loader_{i}'])
for images, _ in pbar:
Nets[f'optim_{i}'].zero_grad()
x1 = images[0].to(device)
x2 = images[1].to(device)
z1, p1 = Nets[f'model_{i}'](x1)
z2, p2 = Nets[f'model_{i}'](x2)
with torch.no_grad():
_, p1_g = global_model(x1)
_, p2_g = global_model(x2)
loss_sample = 0.5 * asymmetric_loss(p1, z2) + 0.5 * asymmetric_loss(p2, z1)
loss_model = 0.5 * asymmetric_loss(p1, p1_g) + 0.5 * asymmetric_loss(p2, p2_g)
loss = loss_sample + args.lbd * loss_model
loss.backward()
Nets[f'optim_{i}'].step()
if loss_ema is None:
loss_ema = loss.item()
else:
loss_ema = 0.95 * loss_ema + 0.05 * loss.item()
pbar.set_description(f"Epoch: {epoch} | client: {i} | loss_ema: {loss_ema : .4f} | loss_sample: {loss_sample: .4f} | loss_model: {loss_model: .4f}")
# Averaging the local models' parameters to get global model
net_para = Nets[f'model_{0}'].state_dict()
for key in net_para:
global_w[key] = net_para[key] * len(Nets[f'd_{0}']) / n
for i in range(1, args.k):
net_para = Nets[f'model_{i}'].state_dict()
for key in net_para:
global_w[key] += net_para[key] * len(Nets[f'd_{i}']) / n
global_model.load_state_dict(copy.deepcopy(global_w))
global_centroids = get_global_centroids(args, Nets, device)
pseudo_labels, acc, nmi = clustering_by_cosine_similarity(test_loader, global_model, global_centroids, ground_truth_all.numpy(), device)
#save_path = path.join(trial_dir, f"model_pretrain_{int(args.p / 0.25)}.pt")
torch.save(global_model.state_dict(), save_path)
with open(path.join(trial_dir, "logs.txt"), 'a') as f:
f.write(f'Seed: {args.seed} | Epoch: {epoch : 03d} | loss_ema: {loss_ema : .4f} | loss_sample: {loss_sample: .4f} | loss_model: {loss_model: .4f}\n')
checkpoint = torch.load(save_path, map_location=device)
global_model.load_state_dict(checkpoint)
for i in range(args.k):
Nets[f'model_{i}'] = copy.deepcopy(global_model)
Nets[f'optim_{i}'] = torch.optim.Adam(Nets[f'model_{i}'].parameters(), lr = args.lr)
global_centroids = get_global_centroids(args, Nets, device)
pseudo_labels, acc, nmi = clustering_by_cosine_similarity(test_loader, global_model, global_centroids, ground_truth_all.numpy(), device)
return Nets, global_model, pseudo_labels