-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathexample.py
49 lines (33 loc) · 1.34 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
'''
Copyright (c) 2019 [Jia-Yau Shiau]
Code work by Jia-Yau ([email protected]).
--------------------------------------------------
A very simple example code for using lookahead optimizer.
'''
import numpy as np
import tensorflow as tf
from lookahead_opt import BaseLookAhead
DATA_NUM = 100
DEPTH = 10
if __name__ == "__main__":
### Generate Fake Inputs ###
np_inputs = np.random.uniform(0, 1, (DATA_NUM, DEPTH))
np_labels = np.random.uniform(0, 1, (DATA_NUM, 1))
### Build-up Network ###
inputs = tf.placeholder(dtype=tf.float32, shape=(1, DEPTH))
labels = tf.placeholder(dtype=tf.float32, shape=(1, 1))
outputs = tf.layers.dense(inputs, 1)
loss = tf.reduce_mean(tf.abs(outputs - labels))
opt = tf.train.AdamOptimizer().minimize(loss)
train_op = [opt, loss, outputs]
with tf.Session() as sess:
model_vars = [v for v in tf.trainable_variables()]
tf.global_variables_initializer().run()
lookahead = BaseLookAhead(model_vars, k=5, alpha=0.5)
train_op += lookahead.get_ops()
for step_idx in range(DATA_NUM):
results = sess.run(train_op, feed_dict={
inputs: np_inputs[[step_idx],:],
labels: np_labels[[step_idx],:]
})
print ('L1 loss of step {}: {}'.format(step_idx, results[1]))