forked from sirius-ai/MobileFaceNet_TF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_nets.py
139 lines (117 loc) · 6.01 KB
/
test_nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# -*- coding: utf-8 -*-
# /usr/bin/env/python3
'''
test pretrained model.
Author: [email protected] .
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from utils.data_process import load_data
from verification import evaluate
from scipy.optimize import brentq
from scipy import interpolate
from sklearn import metrics
import tensorflow as tf
import numpy as np
import argparse
import time
import sys
import re
import os
def load_model(model):
# Check if the model is a model directory (containing a metagraph and a checkpoint file)
# or if it is a protobuf file with a frozen graph
model_exp = os.path.expanduser(model)
if (os.path.isfile(model_exp)):
print('Model filename: %s' % model_exp)
with tf.gfile.FastGFile(model_exp, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
else:
print('Model directory: %s' % model_exp)
meta_file, ckpt_file = get_model_filenames(model_exp)
print('Metagraph file: %s' % meta_file)
print('Checkpoint file: %s' % ckpt_file)
saver = tf.train.import_meta_graph(os.path.join(model_exp, meta_file))
saver.restore(tf.get_default_session(), os.path.join(model_exp, ckpt_file))
def get_model_filenames(model_dir):
files = os.listdir(model_dir)
meta_files = [s for s in files if s.endswith('.meta')]
if len(meta_files) == 0:
raise ValueError('No meta file found in the model directory (%s)' % model_dir)
elif len(meta_files) > 1:
raise ValueError('There should not be more than one meta file in the model directory (%s)' % model_dir)
meta_file = meta_files[0]
ckpt = tf.train.get_checkpoint_state(model_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_file = os.path.basename(ckpt.model_checkpoint_path)
return meta_file, ckpt_file
meta_files = [s for s in files if '.ckpt' in s]
max_step = -1
for f in files:
step_str = re.match(r'(^model-[\w\- ]+.ckpt-(\d+))', f)
if step_str is not None and len(step_str.groups()) >= 2:
step = int(step_str.groups()[1])
if step > max_step:
max_step = step
ckpt_file = step_str.groups()[0]
return meta_file, ckpt_file
def main(args):
with tf.Graph().as_default():
with tf.Session() as sess:
# prepare validate datasets
ver_list = []
ver_name_list = []
for db in args.eval_datasets:
print('begin db %s convert.' % db)
data_set = load_data(db, args.image_size, args)
ver_list.append(data_set)
ver_name_list.append(db)
# Load the model
load_model(args.model)
# Get input and output tensors, ignore phase_train_placeholder for it have default value.
inputs_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
# image_size = images_placeholder.get_shape()[1] # For some reason this doesn't work for frozen graphs
embedding_size = embeddings.get_shape()[1]
for db_index in range(len(ver_list)):
# Run forward pass to calculate embeddings
print('\nRunnning forward pass on {} images'.format(ver_name_list[db_index]))
start_time = time.time()
data_sets, issame_list = ver_list[db_index]
nrof_batches = data_sets.shape[0] // args.test_batch_size
emb_array = np.zeros((data_sets.shape[0], embedding_size))
for index in range(nrof_batches):
start_index = index * args.test_batch_size
end_index = min((index + 1) * args.test_batch_size, data_sets.shape[0])
feed_dict = {inputs_placeholder: data_sets[start_index:end_index, ...]}
emb_array[start_index:end_index, :] = sess.run(embeddings, feed_dict=feed_dict)
tpr, fpr, accuracy, val, val_std, far = evaluate(emb_array, issame_list, nrof_folds=args.eval_nrof_folds)
duration = time.time() - start_time
print("total time %.3fs to evaluate %d images of %s" % (duration, data_sets.shape[0], ver_name_list[db_index]))
print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
print('fpr and tpr: %1.3f %1.3f' % (np.mean(fpr, 0), np.mean(tpr, 0)))
auc = metrics.auc(fpr, tpr)
print('Area Under Curve (AUC): %1.3f' % auc)
eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
print('Equal Error Rate (EER): %1.3f' % eer)
def parse_arguments(argv):
'''test parameters'''
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str,
help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file',
default='./output/ckpt')
parser.add_argument('--image_size', default=[112, 112], help='the image size')
parser.add_argument('--test_batch_size', type=int,
help='Number of images to process in a batch in the test set.', default=100)
# parser.add_argument('--eval_datasets', default=['lfw', 'cfp_ff', 'cfp_fp', 'agedb_30'], help='evluation datasets')
parser.add_argument('--eval_datasets', default=['lfw'], help='evluation datasets')
parser.add_argument('--eval_db_path', default='./datasets/faces_ms1m_112x112', help='evluate datasets base path')
parser.add_argument('--eval_nrof_folds', type=int,
help='Number of folds to use for cross validation. Mainly used for testing.', default=10)
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))