forked from susieswe/AutoMuseBlogger
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_blog.py
99 lines (83 loc) · 3.32 KB
/
generate_blog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import re
import os
import openai
import textwrap
from time import time,sleep
from pprint import pprint
def open_file(filepath):
with open(filepath, 'r', encoding='utf-8') as infile:
return infile.read()
def save_file(filepath, content):
with open(filepath, 'w', encoding='utf-8') as outfile:
outfile.write(content)
openai.api_key = open_file('openaiapikey.txt')
def gpt3_completion(prompt, engine='text-davinci-002', temp=0.7, top_p=1.0, tokens=1000, freq_pen=0.0, pres_pen=0.0, stop=['asdfasdf', 'asdasdf']):
max_retry = 5
retry = 0
prompt = prompt.encode(encoding='ASCII',errors='ignore').decode() # force it to fix any unicode errors
while True:
try:
response = openai.Completion.create(
engine=engine,
prompt=prompt,
temperature=temp,
max_tokens=tokens,
top_p=top_p,
frequency_penalty=freq_pen,
presence_penalty=pres_pen,
stop=stop)
text = response['choices'][0]['text'].strip()
#text = re.sub('\s+', ' ', text)
filename = '%s_gpt3.txt' % time()
save_file('gpt3_logs/%s' % filename, prompt + '\n\n==========\n\n' + text)
return text
except Exception as oops:
retry += 1
if retry >= max_retry:
return "GPT3 error: %s" % oops
print('Error communicating with OpenAI:', oops)
sleep(1)
def improve_outline(request, outline):
prompt = open_file('prompt_improve_outline.txt').replace('<<REQUEST>>',request).replace('<<OUTLINE>>', outline)
outline = '1. ' + gpt3_completion(prompt)
return outline
def neural_recall(request, section):
prompt = open_file('prompt_section_research.txt').replace('<<REQUEST>>',request).replace('<<SECTION>>',section)
notes = gpt3_completion(prompt)
return notes
def improve_prose(research, prose):
prompt = open_file('prompt_improve_prose.txt').replace('<<RESEARCH>>',research).replace('<<PROSE>>', prose)
prose = gpt3_completion(prompt)
return prose
if __name__ == '__main__':
request = open_file('request.txt')
# build the outline
prompt = open_file('prompt_outline.txt').replace('<<REQUEST>>',request)
outline = '1. ' + gpt3_completion(prompt)
print('\n\nOUTLINE:', outline)
for i in list(range(0,2)):
outline = improve_outline(request, outline)
print('\n\nIMPROVED OUTLINE:', outline)
outline = outline.replace('\n\n', '\n')
sections = outline.splitlines()
final_blog = list()
for section in sections:
# research
research = ''
print('\n\nSECTION:', section)
for i in list(range(0,2)):
result = neural_recall(request, section)
research = research + '\n%s' % result
print('\n\nRESEARCH:', research)
research = research.strip()
# first draft
prompt = open_file('prompt_section_prose.txt').replace('<<RESEARCH>>', research)
prose = gpt3_completion(prompt)
print('\n\nPROSE:', prose)
for i in list(range(0,2)):
prose = improve_prose(research, prose)
print('\n\nPROSE:', prose)
final_blog.append(prose)
pprint(final_blog)
output = '\n\n'.join(final_blog)
save_file('blog.txt', output)