从经验出发通过归纳获得知识是常见的途径,然而这样的知识受限于观测,无法产生突破性的成果。当前的机器学习方法倾向于拟合数据,试图完美地学习过去,而不是发现随着时间的推移将持续存在的真实/因果关系。本文首先科普了因果理论的研究方向,科普了一些相关的概念,接着讨论了因果理论和机器学习结合点,最后提出了我们在因果理论上的应用设想。
- 因果理论研究:Causal Inference & Causal Discovery
- 因果和机器学习的结合:Causal RL,Causal LTR,Casual Domain Adaptation,Casual Stable Learning,Mediation等
Causal inference,预估某行为、因素的影响力或效益,即找到一个衡量变量之间因果关系的参数。根据数据产生途径差异,分为两类:通过有意控制、随机化的实验得到的,能够直接做 causal inference;通过观测数据得到的,后需要额外知道一些先验知识,才能在做 causal inference。适配数据分布差异,解决Selection bias,有很多因果推断的方法:
- Propensity score based sample re-weighting:Labor Market Institutions and the Distribution of Wages
- Improving predictive inference under covariate shift by weighting the log-likelihood function
- Robust Importance Weighting for Covariate Shift
- Reweighting samples under covariate shift using a Wasserstein distance criterion
- Distance Matching:
- PSM
- 更多详见:(02)-Matching
- Estimation and Inference of Heterogeneous Treatment Effects using Random Forests
- Orthogonal Random Forest for Causal Inference
- Modeling heterogeneous treatment effects in survey experiments with Bayesian additive regression trees
- Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects
- Balanced representation learning: Estimating individual treatment effect: generalization bounds and algorithms
- Weighted representation learning: Learning Weighted Representations for Generalization Across Designs
- Domain adaptation + representation learning: Learning Representations for Counterfactual Inference
- 更多详见:(05)-Representation learning
- Multi-task Gaussian process: Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes
- Multi-task with Propensity-Dropout:Deep Counterfactual Networks with Propensity-Dropout
- 更多详见:(06)-Multitask learning
- S-Learner, T-Learner, X-Learner: Metalearners for estimating heterogeneous treatment effects using machine learning
- R-Learner: Quasi-Oracle Estimation of Heterogeneous Treatment Effects
- 更多详见:(04)-Meta learning
Causal Discovery,从众多观测到/未观测到的变量中找出原因,即给定一组变量,找到他们之间的因果关系。大部分因果发现的方法基于因果图,介绍如下:
- Constraint-based
- Score-based
- Greedy Equivalence Search(GES):Optimal structure identification with greedy search
- Functional causal models based
- Linear, non-Gaussian models:LiNGAM A linear non- Gaussian acyclic model for causal discovery
- Non-linear models:non-linear additive noise model (ANM) Nonlinear causal discovery with additive noise models , post-nonlinear causal model(PNL) On the identifiability of the post-nonlinear causal model
- 因果发现的框架:Causal Discovery with Attention-Based Convolutional Neural Networks
- 更多详见:(09)-Causal Discovery
- 主要是对推荐数据的bias研究,推荐系统出现的各种偏差让其推荐非预期的 Item。一方面基于因果理论对排序模型进行优化,见LTR部分;另外,结合无偏的排序学习和衰减的点击模型、基于RL的策略梯度算法+off-policy correction 解决数据偏差的方法
- Causal Embeddings for Recommendation
- The Deconfounded Recommender: A Causal Inference Approach to Recommendation
- Doubly Robust Joint Learning for Recommendation on Data Missing Not at Random
- Top-K Off-Policy Correction for a REINFORCE Recommender System
- Recommendations as Treatments: Debiasing Learning and Evaluation
- Offline Recommender Learning Meets Unsupervised Domain Adaptation
- LTR模型大多是基于用户反馈数据训练模型,这些数据大部分是隐式的,例如用户的点击、浏览、收藏、评论等,但这些数据存在许多偏差bias,如position bias和selection bias,基于因果理论,提出了Heckman rank,Propensity SVM rank,TrustPBM等做法
- Unbiased Learning-to-Rank with Biased Feedback
- Unbiased Learning to Rank with Unbiased Propensity Estimation
- Addressing Trust Bias for Unbiased Learning-to-Rank
- Correcting for Selection Bias in Learning-to-rank Systems
- 因果和RL在很多方面有相似性,两者结合的方法通常有以下几种:去除强化学习算法里的混杂效应,在强化学习中应用反事实框架,因果表示学习,使用强化学习的方法进行因果发现
- Deconfounding Reinforcement Learning in Observational Settings
- Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
- Discovering and Removing Exogenous State Variables and Rewards for Reinforcement Learning
- Structural Nested Models and G-estimation: The Partially Realized Promise
- CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
- 因果模型的框架,包括Neyman-Rubin RCM、SCM和Po-calculus
- The Neyman-Rubin Model of Causal Inference and Estimation Via Matching Methods
- From Ordinary Differential Equations to Structural Causal Models- the deterministic case
- A Potential Outcomes Calculus for Identifying Conditional Path-Specific Effects
- 领域自适应关注算法在测试集上的表现,经常对测试分布如何变化做出了一些假定,例如目标偏移,条件偏移和广义目标偏移。通过学习分布变化性的图表示并将领域适应视为推理问题,进行域适应或迁移学习。
- Domain adaptation under target and conditional shift
- Few-shot Domain Adaptation by Causal Mechanism Transfer
- Domain adaptation with conditional transferable components
- Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions
- Domain adaptation under structural causal models
- Domain adaptation as a problem of inference on graphical models
- 假设因果关系是线性的且噪声是非高斯分布的,研究从subsampled data 和混杂时间序列中发现的因果关系
- Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders
- Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks
- 面对不同数据(OOD),学习有泛化能力的模型。如何学习稳健的预测模型,有以下几类方法:基于结构因果模型的方法(Structural causal model based methods)、基于分布鲁棒优化的方法(Distributionally robust optimization based methods)、基于样本加权的方法(Sample re-weighting based methods)
- Causal inference using invariant prediction- identification and confidence intervals
- Invariant Causal Prediction for Sequential Data
- Learning Models with Uniform Performance via Distributionally Robust Optimization
- Causally regularized learning with agnostic data selection bias
- Stable Learning via Sample Reweighting
- Stable Prediction with Model Misspecification and Agnostic Distribution Shift
- Stable Prediction via Leveraging Seed Variable
- Stable prediction across unknown environments
- Latent Causal Invariant Model
- 中介分析理论,和公平性、归因等问题相关,通过基于因果分析的改进来去除已知的伪相关,提取其直接因果效应,降低模型给出不公平决策的可能性
- An interventionist approach to mediation analysis
- On semiparametric estimation of a path-specific effect in the presence of mediator-outcome confounding
广泛应用于在线广告、营销、推荐、医疗、教育等, 有一些公司提供了开源工具
- FB:
- Hulu:
- 广告优化: Doubly Robust Estimation of Causal Effects
- 用户/广告体验分析:Causal Inference at hulu
- Uber:
- 阿里:
- 腾讯:
- 广告价值度量: Uplift⼴告增效衡量⽅案
- 京东:
- EBay:
- 贝壳:
- Wayfair:
- Criteo:
- Linkedin:
- 商业活动价值验证: The Importance of Being Causal
- Causal inference from observational data: Estimating the effect of contributions on visitation frequency at LinkedIn
- 微软:
- 搜索广告:Causal Inference in the Presence of Interference in Sponsored Search Advertising
- 工具:
- DoWhy:An End-to-End Library for Causal Inference
- EconML
- Huawei:
- DeepMind: Algorithms for Causal Reasoning in Probability Trees