-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·393 lines (325 loc) · 15.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import argparse
import datetime
import json
import random
import time
import numpy as np
import os
import torch
from pathlib import Path
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import datasets.samplers as samplers
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch, viz
from models import build_model
from models.backbone import build_swav_backbone, build_swav_backbone_old
import util.misc as utils
from util.default_args import set_model_defaults, get_args_parser
from util.pytorchtools import EarlyStopping
from fvcore.nn import FlopCountAnalysis, parameter_count_table
from util.utils import BestMetricHolder, ModelEma
try:
# from torch.utils.tensorboard import SummaryWriter
from tensorboardX import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def main(args):
utils.init_distributed_mode(args)
print("git: \n {}\n".format(utils.get_sha()))
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only."
print(args)
tmp = args.output_dir.split("/")[-1]
print('tmp: ',tmp)
log_dir = f'runs/upicker_experiment_{tmp}'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
use_cuda = torch.cuda.is_available()
print('Use cuda {}'.format(use_cuda))
device = torch.device(args.device)
# fix the seed for reproducibility
if args.random_seed:
args.seed = np.random.randint(0, 1000000)
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Create Tensorboard writer
if TENSORBOARD_FOUND:
writer = SummaryWriter(log_dir)
else:
print("Tensorboard not available: not logging progress")
swav_model = None
if args.dataset.endswith('pretrain'):
if args.obj_embedding_head == 'head':
swav_model = build_swav_backbone(args, device)
elif args.obj_embedding_head == 'intermediate':
swav_model = build_swav_backbone_old(args, device)
if args.model == 'upicker':
print('\n[args by parser:]', args)
from util.slconfig import SLConfig, DictAction
cfg = SLConfig.fromfile(args.config_file)
print('\n[upicker args by file:]', cfg)
cfg_dict = cfg._cfg_dict.to_dict()
for k,v in cfg_dict.items():
setattr(args, k, v)
if args.options is not None:
cfg.merge_from_dict(args.options)
print('args after merge:\n', args)
from models.upicker import upicker
model, criterion, postprocessors = upicker.build_upicker(args)
else:
model, criterion, postprocessors = build_model(args)
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
# if args.model != 'upicker':
# tensor = torch.rand(1, 3, 800, 800)
# flops = FlopCountAnalysis(model, tensor.to(device))
# print("FLOPs: ", flops.total())
# 分析parameters
print(parameter_count_table(model))
dataset_train, dataset_val = get_datasets(args)
print("Number of training examples:", len(dataset_train))
print("Number of validation examples:", len(dataset_val))
# 数据集采样器
if args.distributed:
if args.cache_mode:
sampler_train = samplers.NodeDistributedSampler(dataset_train)
sampler_val = samplers.NodeDistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = samplers.DistributedSampler(dataset_train)
sampler_val = samplers.DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
coco_evaluator = None
# batch采样器
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True)
# dataloader
data_loader_train = DataLoader(dataset_train,
batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn,
num_workers=args.num_workers,
pin_memory=True)
data_loader_val = DataLoader(dataset_val,
args.batch_size,
sampler=sampler_val,
drop_last=False,
collate_fn=utils.collate_fn,
num_workers=args.num_workers,
pin_memory=True)
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
for n, p in model_without_ddp.named_parameters():
print('n:',n)
param_dicts = [
{
"params": [p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, args.lr_backbone_names)
and not match_name_keywords(n, args.lr_linear_proj_names)
and p.requires_grad],
"lr": args.lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if match_name_keywords(n, args.lr_backbone_names)
and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters()
if match_name_keywords(n, args.lr_linear_proj_names)
and p.requires_grad],
"lr": args.lr * args.lr_linear_proj_mult,
}
]
if args.sgd:
optimizer = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
else:
# default
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
base_ds = get_coco_api_from_dataset(dataset_val)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.pretrain:
print("Initialized from the pre-training model")
checkpoint = torch.load(args.pretrain, map_location='cpu')
state_dict = checkpoint['model']
for k in list(state_dict.keys()):
# remove useless class embedding
if 'class_embed' in k:
del state_dict[k]
msg = model_without_ddp.load_state_dict(state_dict, strict=False)
print('msg: ',msg)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(
checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (
k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
import copy
p_groups = copy.deepcopy(optimizer.param_groups)
optimizer.load_state_dict(checkpoint['optimizer'])
for pg, pg_old in zip(optimizer.param_groups, p_groups):
pg['lr'] = pg_old['lr']
pg['initial_lr'] = pg_old['initial_lr']
print(optimizer.param_groups)
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.override_resumed_lr_drop = True
if args.override_resumed_lr_drop:
print('Warning: (hack) args.override_resumed_lr_drop is set to True, so args.lr_drop would override lr_drop in resumed lr_scheduler.')
lr_scheduler.step_size = args.lr_drop
lr_scheduler.base_lrs = list(
map(lambda group: group['initial_lr'], optimizer.param_groups))
lr_scheduler.step(lr_scheduler.last_epoch)
args.start_epoch = checkpoint['epoch'] + 1
if (not args.eval and not args.viz):
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, args=args
)
if args.eval:
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors,
data_loader_val, base_ds, device, args.output_dir, args=args, writer=writer)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir/"eval.pth")
return
if args.viz:
viz(model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir)
return
# initialize the early_stopping object
early_stopping = EarlyStopping(patience=30, verbose=True)
print("\n>>>>>>>>>>>>>> UPicker Start training >>>>>>>>>>>>>>>>>>")
print('Start epoch: ', args.start_epoch)
print('Epochs', args.epochs)
start_time = time.time()
best_map_holder = BestMetricHolder(use_ema=args.use_ema)
for epoch in range(args.start_epoch, args.epochs):
print("====== This is the training epoch: " + str(epoch) + "======")
epoch_start_time = time.time()
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(model, swav_model, criterion, data_loader_train, optimizer, writer,
device, epoch, args.clip_max_norm, args=args)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir/'checkpoint.pth']
# extra checkpoints before LR drop and every 10 epochs
if (epoch+1) % args.lr_drop == 0 or (epoch + 1) % args.save_checkpoint_interval == 0:
# checkpoint_paths.append(output_dir/f'checkpoint{epoch:04}.pth')
checkpoint_paths.append(output_dir/'checkpoint{:04}.pth'.format(epoch))
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch':epoch,
'args':args,
}, checkpoint_path)
# EarlyStopping
if args.dataset in ['coco'] and epoch % args.eval_every == 0:
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, args, writer)
# early_stopping(test_stats['loss'], model)
map_regular = test_stats['coco_eval_bbox'][0]
_isbest = best_map_holder.update(map_regular, epoch, is_ema=False)
if _isbest:
checkpoint_path = output_dir/'checkpoint_best_regular.pth'
utils.save_on_master({
'model':model_without_ddp.state_dict(),
'optimizer':optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
pr1 = coco_evaluator.coco_eval['bbox'].eval['precision'][0,:,0,:,2]
x = np.arange(0.0, 1.01, 0.01)
plt.switch_backend('agg')
plt.figure(figsize=(10,6), facecolor='w')
plt.xlabel('Recall', fontsize=14)
plt.ylabel('Precision', fontsize=14)
plt.xlim(0,1.0)
plt.ylim(0,1.0)
plt.grid(True, linestyle='--', alpha=0.7)
plt.plot(x, pr1, 'r-', label='Precision-Recall curve', linewidth=2)
handles, labels = plt.gca().get_legend_handles_labels()
from collections import OrderedDict
by_label = OrderedDict(zip(labels, handles))
plt.legend(by_label.values(), by_label.keys(), loc='lower left', fontsize=12)
plt.savefig(f'{args.output_dir}/PR.png',dpi=300, bbox_inches='tight')
plt.close()
else:
test_stats = {}
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch':epoch,
'n_parameters':n_parameters}
for k, v in train_stats.items():
writer.add_scalar(k, v, epoch)
if args.output_dir and utils.is_main_process():
with (output_dir/'log.txt').open('a') as f:
f.write(json.dumps(log_stats)+'\n')
# for evaluation logs
if coco_evaluator is not None:
(output_dir/'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 10 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval, output_dir/"eval"/name)
if early_stopping.early_stop:
print(f'Early stopping......after {epoch} epochs')
break
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('\nTraining time {}'.format(total_time_str))
writer.close()
def get_datasets(args):
print('args.dataset == ', args.dataset)
# if we want to pretrain on the dataset:
if args.dataset.endswith('pretrain'):
from datasets.selfdet import build_selfdet
if args.filter_num > 0:
tmp = os.path.join(os.path.join(args.data_root, args.dataset_file), f'pretrain_{args.filter_num}')
else:
tmp = os.path.join(os.path.join(args.data_root, args.dataset_file), 'pretrain')
dataset_train = build_selfdet('pretrain', args=args, p=tmp)
dataset_val = build_dataset(image_set='val', args=args)
# if we want to finetune on this dataset:
else:
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
return dataset_train, dataset_val
if __name__ == '__main__':
parser = argparse.ArgumentParser('Training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
set_model_defaults(args)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)