-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtrain_LocalSGD.py
326 lines (279 loc) · 10.9 KB
/
train_LocalSGD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import numpy as np
import time
import argparse
import sys
import math
from math import ceil
from random import Random
import torch
import torch.distributed as dist
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.functional as F
from torch.multiprocessing import Process
import torchvision
from torchvision import datasets, transforms
import torch.backends.cudnn as cudnn
import torchvision.models as models
from distoptim import FedProx, FedNova
import util_v4 as util
import logging
import time
parser = argparse.ArgumentParser(description='CIFAR-10 baseline')
parser.add_argument('--name','-n',
default="default",
type=str,
help='experiment name, used for saving results')
parser.add_argument('--backend',
default="nccl",
type=str,
help='background name')
parser.add_argument('--model',
default="res",
type=str,
help='neural network model')
parser.add_argument('--alpha',
default=0.2,
type=float,
help='control the non-iidness of dataset')
parser.add_argument('--gmf',
default=0,
type=float,
help='global (server) momentum factor')
parser.add_argument('--lr',
default=0.1,
type=float,
help='client learning rate')
parser.add_argument('--momentum',
default=0.0,
type=float,
help='local (client) momentum factor')
parser.add_argument('--bs',
default=512,
type=int,
help='batch size on each worker/client')
parser.add_argument('--rounds',
default=200,
type=int,
help='total coommunication rounds')
parser.add_argument('--localE',
default=98,
type=int,
help='number of local epochs')
parser.add_argument('--print_freq',
default=100,
type=int,
help='print info frequency')
parser.add_argument('--size',
default=8,
type=int,
help='number of local workers')
parser.add_argument('--rank',
default=0,
type=int,
help='the rank of worker')
parser.add_argument('--seed',
default=1,
type=int,
help='random seed')
parser.add_argument('--save', '-s',
action='store_true',
help='whether save the training results')
parser.add_argument('--p', '-p',
action='store_true',
help='whether the dataset is partitioned or not')
parser.add_argument('--NIID',
action='store_true',
help='whether the dataset is non-iid or not')
parser.add_argument('--pattern',
type=str,
help='pattern of local steps')
parser.add_argument('--optimizer',
default='local',
type=str,
help='optimizer name')
parser.add_argument('--initmethod',
default='tcp://h0:22000',
type=str,
help='init method')
parser.add_argument('--mu',
default=0,
type=float,
help='mu parameter in fedprox')
parser.add_argument('--savepath',
default='./results/',
type=str,
help='directory to save exp results')
parser.add_argument('--datapath',
default='./data/',
type=str,
help='directory to load data')
logging.basicConfig(format='%(levelname)s - %(message)s', level=logging.INFO)
logging.debug('This message should appear on the console')
args = parser.parse_args()
def run(rank, size):
# initiate experiments folder
save_path = args.savepath
folder_name = save_path+args.name
if rank == 0 and os.path.isdir(folder_name)==False and args.save:
os.mkdir(folder_name)
dist.barrier()
# initiate log files
tag = '{}/lr{:.3f}_bs{:d}_cp{:d}_a{:.2f}_e{}_r{}_n{}.csv'
saveFileName = tag.format(folder_name, args.lr, args.bs, args.localE,
args.alpha, args.seed, rank, size)
args.out_fname = saveFileName
with open(args.out_fname, 'w+') as f:
print(
'BEGIN-TRAINING\n'
'World-Size,{ws}\n'
'Batch-Size,{bs}\n'
'Epoch,itr,'
'Loss,avg:Loss,Prec@1,avg:Prec@1,val,time'.format(
ws=args.size,
bs=args.bs),
file=f)
# seed for reproducibility
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
# load datasets
train_loader, test_loader, DataRatios = \
util.partition_dataset(rank, size, args)
logging.debug("Worker id {} local sample ratio {} "
"local epoch length {}"
.format(rank, DataRatios[rank], len(train_loader)))
# define neural nets model, criterion, and optimizer
model = util.select_model(10, args).cuda()
criterion = nn.CrossEntropyLoss().cuda()
# select optimizer according to algorithm
algorithms = {
'fedavg': FedProx, # mu = 0
'fedprox': FedProx,
# 'scaffold': Scaffold,
'fednova': FedNova,
# 'fednova_vr':FedNovaVR,
}
selected_opt = algorithms[args.optimizer]
optimizer = selected_opt(model.parameters(),
lr=args.lr,
gmf=args.gmf,
mu=args.mu,
ratio=DataRatios[rank],
momentum=args.momentum,
nesterov = False,
weight_decay=1e-4)
best_test_accuracy = 0
for rnd in range(args.rounds):
# Decide number of local updates per client
local_epochs = update_local_epochs(args.pattern, rank, rnd)
tau_i = local_epochs * len(train_loader)
logging.info("local epochs {} iterations {}"
.format(local_epochs, tau_i))
# Decay learning rate according to round index
update_learning_rate(optimizer, rnd, args.lr)
# Clients locally train for several local epochs
for t in range(local_epochs):
train(model, criterion, optimizer, train_loader, t)
# synchronize parameters
dist.barrier()
comm_start = time.time()
optimizer.average()
dist.barrier()
comm_end = time.time()
comm_time = comm_end - comm_start
# evaluate test accuracy
test_acc = evaluate(model, test_loader)
if test_acc > best_test_accuracy:
best_test_accuracy = test_acc
# record metrics
logging.info("Round {} test accuracy {:.3f} time {:.3f}".format(rnd, test_acc, comm_time))
with open(args.out_fname, '+a') as f:
print('{ep},{itr},{filler},{filler},'
'{filler},{filler},'
'{val:.4f},{time:.4f}'
.format(ep=rnd, itr=-1,
filler=-1, val=test_acc, time=comm_time), file=f)
logging.info("Worker {} best test accuracy {:.3f}"
.format(rank, best_test_accuracy))
def evaluate(model, test_loader):
model.eval()
top1 = util.Meter(ptag='Acc')
with torch.no_grad():
for data, target in test_loader:
data = data.cuda(non_blocking = True)
target = target.cuda(non_blocking = True)
outputs = model(data)
acc1 = util.comp_accuracy(outputs, target)
top1.update(acc1[0].item(), data.size(0))
return top1.avg
def train(model, criterion, optimizer, loader, epoch):
model.train()
losses = util.Meter(ptag='Loss')
top1 = util.Meter(ptag='Prec@1')
for batch_idx, (data, target) in enumerate(loader):
# data loading
data = data.cuda(non_blocking = True)
target = target.cuda(non_blocking = True)
# forward pass
output = model(data)
loss = criterion(output, target)
# backward pass
loss.backward()
# gradient step
optimizer.step()
optimizer.zero_grad()
# write log files
train_acc = util.comp_accuracy(output, target)
losses.update(loss.item(), data.size(0))
top1.update(train_acc[0].item(), data.size(0))
if batch_idx % args.print_freq == 0 and args.save:
logging.debug('epoch {} itr {}, '
'rank {}, loss value {:.4f}, train accuracy {:.3f}'
.format(epoch, batch_idx, rank, losses.avg, top1.avg))
with open(args.out_fname, '+a') as f:
print('{ep},{itr},'
'{loss.val:.4f},{loss.avg:.4f},'
'{top1.val:.3f},{top1.avg:.3f},-1'
.format(ep=epoch, itr=batch_idx,
loss=losses, top1=top1), file=f)
with open(args.out_fname, '+a') as f:
print('{ep},{itr},'
'{loss.val:.4f},{loss.avg:.4f},'
'{top1.val:.3f},{top1.avg:.3f},-1'
.format(ep=epoch, itr=batch_idx,
loss=losses, top1=top1), file=f)
def update_local_epochs(pattern, rank, rnd):
if pattern == "constant":
return args.localE
if pattern == "uniform_random":
np.random.seed(2020+rank+rnd+args.seed)
return np.random.randint(low=2, high=args.localE, size=1)[0]
def update_learning_rate(optimizer, epoch, target_lr):
"""
1) Decay learning rate exponentially (epochs 30, 60, 80)
** note: target_lr is the reference learning rate from which to scale down
"""
if epoch == int(args.rounds / 2):
lr = target_lr/10
logging.info('Updating learning rate to {}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if epoch == int(args.rounds * 0.75):
lr = target_lr/100
logging.info('Updating learning rate to {}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def init_processes(rank, size, fn):
""" Initialize the distributed environment. """
dist.init_process_group(backend=args.backend,
init_method=args.initmethod,
rank=rank,
world_size=size)
fn(rank, size)
if __name__ == "__main__":
rank = args.rank
size = args.size
print(rank)
init_processes(rank, size, run)