Skip to content

Latest commit

 

History

History
135 lines (113 loc) · 4.32 KB

README.md

File metadata and controls

135 lines (113 loc) · 4.32 KB

PoseEstimation

Requirements (not complete)

pip install ultralytics==8.2.18
pip install mediapipe==0.10.11

# pip install decord

Download weights

mkdir checkpoints
wget -O checkpoints/hand_landmarker.task -q https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task
wget -O checkpoints/pose_landmarker_full.task -q https://storage.googleapis.com/mediapipe-models/pose_landmarker/pose_landmarker_full/float16/latest/pose_landmarker_full.task
wget -O checkpoints/face_landmarker.task -q https://storage.googleapis.com/mediapipe-models/face_landmarker/face_landmarker/float16/latest/face_landmarker.task

Predict keypoints in parallel

Descriptions:

  • input: folder with clips
  • output: spatial cropped clip with size (512, 512) and predicted keypoints in json file with same name as clip
  • crop is created based on sign space around the person
  • if input clip is not square, shorter side will be padded with (114,114,114) color
  • clips without predictions or multiple predictions are skipped
  • script can run in parallel, each process can access its own index file or select index files randomly

Prepare index files in advance (not necessary).

from pose_prediction_parallel import create_index_files
clip_folder = ""
index_folder = ""
num_index_files = 100

create_index_files(clip_folder, index_folder, num_index_files)

Run multiple parallel jobs. If index files does not exist, first job will crete them. If index_file_id is not specified, clips will be processed randomly.

# create 100 index files and process fill index_file_000
# additional processes can be run in parallel with different index_file_id
python pose_prediction_parallel.py \
    --input_folder data/clips \
    --output_folder data/cropped_clips \
    --tmp_folder data/tmp_clips \
    --num_index_files 100 \
    --index_path data/index_files \
    --index_file_id 0 \
    --checkpoint_folder checkpoints \
    --sign_space 4 \
    --yolo_sign_space 4

Parallel jobs can be run as array job PBS example:

#PBS -J 0-9

python pose_prediction_parallel.py \
  --index_file_id "$PBS_ARRAY_INDEX"
  # ...

Create normalized keypoint feature h5 dataset

Descriptions:

  • Converts features from json files into h5
  • Structure of the h5: {"video_name_00": {clip_name_00: features_00_00, clip_name_01: features_00_01, ...}, ...}
  • Shape of the features: number of frames x embedding dimension
  • Face keypoints are reduced (see data/h2s.py -> How2SignDatasetJSON.face_landmarks)
  • Keypoint prediction scripts does not save leg keypoints
  • Keypoints are normalized before saving:
    • global-pose_landmarks
    • local-right_hand_landmarks
    • local-left_hand_landmarks
    • local-face_landmarks
  • Local normalization: moves keypoints to origin adds square padding and normalizes the values in local space -> captures local shape, independent of position in space and scale
  • Global normalization: keypoints are normalized in relation to signing space -> captures absolute position and relation between parts
  • If the name of the clips is not in the format: video_name.time_stamp.mp4 annotation file with columns SENTENCE_NAME and VIDEO_ID should be provided
python create_keypoint_features.py \
  --input_folder data/cropped_clips
  --output_folder data/features
  --dataset_name h2s \
  --split_name train \
  --annotation_file data\how2sign_realigned_train.csv   # only if the name is in bad format

Keypoint dataset

data/keypoint_dataset.py -> KeypointDatasetJSON Description:

  • Load and normalize keypoints from json files

Output:

  • List of clip keypoints for one video
# output example
[
   {
      'data': np.empty([n_frames_00, 208]),
      'video_name': 'video_name_00',
      'clip_name': 'clip_name_00'
   },
   {
      'data': np.empty([n_frames_01, 208]),
      'video_name': 'video_name_00',
      'clip_name': 'clip_name_01'
   },
]

Predict

Descriptions:

  • Prediction script for demo
from predict_pose import predict_pose, create_mediapipe_models#

# load models: 
#   hand_landmarker.task
#   pose_landmarker_full.task
#   face_landmarker.task
checkpoint_folder = ""
models = create_mediapipe_models(checkpoint_folder)

# predict
video = []
prediction = predict_pose(video, models, sign_space=4, yolo_sign_space=4)