-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebug.m
41 lines (34 loc) · 1.84 KB
/
debug.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
SetVerbose("IsGL2Equiv", 0);
P<x> := PolynomialRing(Rationals());
P<x> := PolynomialRing(FiniteField(NextPrime(10^3)));
d := 5;
while true do
print d;
f1 := x^d - 1;
C1 := HyperellipticCurve(f1);
f2 := x^d + 1;
C2 := HyperellipticCurve(f2);
time test, Ts := IsIsomorphicHyperellipticCurves(C1, C1);
time test, Ts := IsIsomorphicHyperellipticCurves(C1, C1 : geometric := true);
time test, Ts := IsIsomorphicHyperellipticCurves(C1, C1 : geometric := true, commonfield := true);
time test, Ts := IsIsomorphicHyperellipticCurves(C1, C2);
time test, Ts := IsIsomorphicHyperellipticCurves(C1, C2 : geometric := true);
time test, Ts := IsIsomorphicHyperellipticCurves(C1, C2 : geometric := true, commonfield := true);
time test, Ts := IsIsomorphicHyperellipticCurves(C2, C2);
time test, Ts := IsIsomorphicHyperellipticCurves(C2, C2 : geometric := true);
time test, Ts := IsIsomorphicHyperellipticCurves(C2, C2 : geometric := true, commonfield := true);
g1 := x^d - x;
D1 := HyperellipticCurve(g1);
g2 := x^d + x;
D2 := HyperellipticCurve(g2);
time test, Ts := IsIsomorphicHyperellipticCurves(D1, D1);
time test, Ts := IsIsomorphicHyperellipticCurves(D1, D1 : geometric := true);
time test, Ts := IsIsomorphicHyperellipticCurves(D1, D1 : geometric := true, commonfield := true);
time test, Ts := IsIsomorphicHyperellipticCurves(D1, D2);
time test, Ts := IsIsomorphicHyperellipticCurves(D1, D2 : geometric := true);
time test, Ts := IsIsomorphicHyperellipticCurves(D1, D2 : geometric := true, commonfield := true);
time test, Ts := IsIsomorphicHyperellipticCurves(D2, D2);
time test, Ts := IsIsomorphicHyperellipticCurves(D2, D2 : geometric := true);
time test, Ts := IsIsomorphicHyperellipticCurves(D2, D2 : geometric := true, commonfield := true);
d +:= 1;
end while;