We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Something up with relative extensions?
> _<x> := PolynomialRing(Rationals()); > X := HyperellipticCurve(x^5 - 3*x^4 + 5*x^3 + 27*x^2 + 18*x); > Y := EllipticCurve(x^3 - 7*x^2 + 20*x + 4); > K := NumberField(x^2+1); > AllArithmetic2Gluings(Y,X); [ [* 4*x^4 - 39*x^2*y^2 - 94*x^2*y*z - 27*x^2*z^2 + 4*y^4 + 20*y^2*z^2 + 72*z^4, -188, t, [ [ 1/682*(-3*$.1^4 + 84*$.1^3 - 937*$.1^2 + 4886*$.1 - 8468), 1/1364*(3*$.1^4 - 84*$.1^3 + 937*$.1^2 - 5568*$.1 + 18016), 1/1364*(3*$.1^4 - 84*$.1^3 + 937*$.1^2 - 4204*$.1 + 8468) ], [ 1/682*(7*$.1^4 - 196*$.1^3 + 1959*$.1^2 - 8218*$.1 + 11802), 1/1364*(-3*$.1^5 + 98*$.1^4 - 1329*$.1^3 + 9486*$.1^2 - 34452*$.1 + 50884), 1/1364*(3*$.1^5 - 112*$.1^4 + 1721*$.1^3 - 13404*$.1^2 + 50888*$.1 - 67668) ] ] *], [* 9*x^4 - 8*x^2*y^2 + 36*x^2*y*z - 36*x^2*z^2 + 9*y^4 + 36*y^3*z - 72*y*z^3 - 81*z^4, 234, t + 1, [ [ 1/682*(-3*$.1^4 + 84*$.1^3 - 937*$.1^2 + 4886*$.1 - 8468), 1/1364*(3*$.1^4 - 84*$.1^3 + 937*$.1^2 - 5568*$.1 + 18016), 1/1364*(3*$.1^4 - 84*$.1^3 + 937*$.1^2 - 4204*$.1 + 8468) ], [ 1/341*(2*$.1^4 - 56*$.1^3 + 511*$.1^2 - 1666*$.1 + 1326), 1/1364*(-3*$.1^5 + 101*$.1^4 - 1413*$.1^3 + 10423*$.1^2 - 40020*$.1 + 67536), 1/1364*(3*$.1^5 - 109*$.1^4 + 1637*$.1^3 - 12467*$.1^2 + 46684*$.1 - 60564) ] ] *] ] > AllArithmetic2Gluings(ChangeRing(Y,K),ChangeRing(X,K)); AllArithmetic2Gluings( X1: Elliptic Curve defined by y^2 = x^3 - 7*x^2 + 20*x + 4 over ..., X2: Hyperelliptic Curve defined by y^2 = x^5 - 3*x^4 + 5*x^3 + 2... ) ApplyFormulaABRs( frs: $.1^3 - 7*$.1^2 + 20*$.1 + 4, fss: $.1^4 - 3*$.1^3 + 5*$.1^2 + 27*$.1 + 18, fab: $.1 ) CompatibleRootPairings( f1: $.1^3 - 7*$.1^2 + 20*$.1 + 4, f2: $.1^3 - 5*$.1^2 - 153*$.1 - 531 ) SplittingFieldWithAutomorphisms( f: $.1^3 - 7*$.1^2 + 20*$.1 + 4 ) In file "/Users/jvoight/Library/CloudStorage/Dropbox-Personal/github/CHIMP/glui\ ng/magma/interpolated/routines.m", line 58, column 34: >> Gp, Ga, Gphi := AutomorphismGroup(L, K); ^ Runtime error in 'AutomorphismGroup': The first argument must be an extension of the second argument
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Something up with relative extensions?
The text was updated successfully, but these errors were encountered: