"The whole point of machine learning is to *learn from data*. In *supervised learning* you want to learn how to predict a target $y$ given a set of features $X$. Meanwhile in an unsupervised learning there is no target, and the goal is rather to identify patterns and trends in the features $X$. At this point most people tend to imagine $X$ as a somewhat big table where each row is an observation and each column is a feature, and they would be quite right. Learning from tabular data is part of what's called *batch learning*, which basically that all of the data is available to our learning algorithm at once. Multiple libraries have been created to handle the batch learning regime, with one of the most prominent being Python's [scikit-learn](https://scikit-learn.org/stable/).\n",
0 commit comments