forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparse.py
291 lines (249 loc) Β· 12.4 KB
/
sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import functools
import os
import random
import numpy as np
import paddle
from paddle.io import BatchSampler, DataLoader
from trustai.interpretation import FeatureSimilarityModel
from paddlenlp.data import DataCollatorWithPadding
from paddlenlp.dataaug import WordDelete, WordInsert, WordSubstitute, WordSwap
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import AutoModelForSequenceClassification, AutoTokenizer
from paddlenlp.utils.log import logger
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument('--device', default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--dataset_dir", required=True, type=str, help="The dataset directory should include train.txt,dev.txt and test.txt files.")
parser.add_argument("--aug_strategy", choices=["duplicate", "substitute", "insert", "delete", "swap"], default='substitute', help="Select data augmentation strategy")
parser.add_argument("--annotate", action='store_true', help="Select unlabeled data for annotation")
parser.add_argument("--params_path", default="../checkpoint/", type=str, help="The path to model parameters to be loaded.")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=16, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--seed", type=int, default=3, help="random seed for initialization")
parser.add_argument("--rationale_num_sparse", type=int, default=3, help="Number of rationales per example for sparse data.")
parser.add_argument("--rationale_num_support", type=int, default=6, help="Number of rationales per example for support data.")
parser.add_argument("--sparse_num", type=int, default=100, help="Number of sparse data.")
parser.add_argument("--support_threshold", type=float, default="0.7", help="The threshold to select support data.")
parser.add_argument("--support_num", type=int, default=100, help="Number of support data.")
parser.add_argument("--train_file", type=str, default="train.txt", help="Train dataset file name")
parser.add_argument("--dev_file", type=str, default="dev.txt", help="Dev dataset file name")
parser.add_argument("--label_file", type=str, default="label.txt", help="Label file name")
parser.add_argument("--unlabeled_file", type=str, default="data.txt", help="Unlabeled data filename")
parser.add_argument("--sparse_file", type=str, default="sparse.txt", help="Sparse data file name.")
parser.add_argument("--support_file", type=str, default="support.txt", help="support data file name.")
args = parser.parse_args()
# yapf: enable
def set_seed(seed):
"""
Set random seed
"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
def read_local_dataset(path):
"""
Read dataset file
"""
with open(path, "r", encoding="utf-8") as f:
for line in f:
items = line.strip().split("\t")
if len(items) == 2:
yield {"text": items[0], "label": items[1]}
elif len(items) == 1:
yield {"text": items[0]}
else:
logger.info(line.strip())
raise ValueError("{} should be in fixed format.".format(path))
f.close()
def preprocess_function(examples, tokenizer, max_seq_length):
"""
Preprocess dataset
"""
result = tokenizer(text=examples["text"], max_seq_len=max_seq_length)
return result
class LocalDataCollatorWithPadding(DataCollatorWithPadding):
"""
Convert the result of DataCollatorWithPadding from dict dictionary to a list
"""
def __call__(self, features):
batch = super().__call__(features)
batch = list(batch.values())
return batch
def get_sparse_data(analysis_result, sparse_num):
"""
Get sparse data
"""
idx_scores = {}
preds = []
for i in range(len(analysis_result)):
scores = analysis_result[i].pos_scores
idx_scores[i] = sum(scores) / len(scores)
preds.append(analysis_result[i].pred_label)
idx_socre_list = list(sorted(idx_scores.items(), key=lambda x: x[1]))[:sparse_num]
ret_idxs, ret_scores = list(zip(*idx_socre_list))
return ret_idxs, ret_scores, preds
def find_sparse_data():
"""
Find sparse data (lack of supports in train dataset) in dev dataset
"""
set_seed(args.seed)
paddle.set_device(args.device)
# Define model & tokenizer
if os.path.exists(args.params_path):
model = AutoModelForSequenceClassification.from_pretrained(args.params_path)
tokenizer = AutoTokenizer.from_pretrained(args.params_path)
else:
raise ValueError("The {} should exist.".format(args.params_path))
# Prepare & preprocess dataset
label_path = os.path.join(args.dataset_dir, args.label_file)
train_path = os.path.join(args.dataset_dir, args.train_file)
dev_path = os.path.join(args.dataset_dir, args.dev_file)
label_list = {}
with open(label_path, "r", encoding="utf-8") as f:
for i, line in enumerate(f):
l = line.strip()
label_list[l] = i
f.close()
train_ds = load_dataset(read_local_dataset, path=train_path, lazy=False)
dev_ds = load_dataset(read_local_dataset, path=dev_path, lazy=False)
trans_func = functools.partial(preprocess_function, tokenizer=tokenizer, max_seq_length=args.max_seq_length)
train_ds = train_ds.map(trans_func)
dev_ds = dev_ds.map(trans_func)
# Batchify dataset
collate_fn = LocalDataCollatorWithPadding(tokenizer)
train_batch_sampler = BatchSampler(train_ds, batch_size=args.batch_size, shuffle=False)
dev_batch_sampler = BatchSampler(dev_ds, batch_size=args.batch_size, shuffle=False)
train_data_loader = DataLoader(dataset=train_ds, batch_sampler=train_batch_sampler, collate_fn=collate_fn)
dev_data_loader = DataLoader(dataset=dev_ds, batch_sampler=dev_batch_sampler, collate_fn=collate_fn)
# Classifier_layer_name is the layer name of the last output layer
feature_sim = FeatureSimilarityModel(model, train_data_loader, classifier_layer_name="classifier")
# Feature similarity analysis & select sparse data
analysis_result = []
for batch in dev_data_loader:
analysis_result += feature_sim(batch, sample_num=args.rationale_num_sparse)
sparse_indexs, sparse_scores, preds = get_sparse_data(analysis_result, args.sparse_num)
# Save the sparse data
is_true = []
with open(os.path.join(args.dataset_dir, args.sparse_file), "w") as f:
for idx in sparse_indexs:
data = dev_ds.data[idx]
f.write(data["text"] + "\t" + str(data["label"]) + "\n")
is_true.append(1 if str(preds[idx]) == str(label_list[data["label"]]) else 0)
f.close()
logger.info("Sparse data saved in {}".format(os.path.join(args.dataset_dir, args.sparse_file)))
logger.info("Accuracy in sparse data: {:.2f}%".format(100 * sum(is_true) / len(is_true)))
logger.info("Average score in sparse data: {:.4f}".format(sum(sparse_scores) / len(sparse_scores)))
return os.path.join(args.dataset_dir, args.sparse_file)
def get_support_data(analysis_result, support_num, support_threshold=0.7):
"""
get support data
"""
ret_idxs = []
ret_scores = []
rationale_idx = 0
try:
while len(ret_idxs) < support_num:
for n in range(len(analysis_result)):
score = analysis_result[n].pos_scores[rationale_idx]
if score > support_threshold:
idx = analysis_result[n].pos_indexes[rationale_idx]
if idx not in ret_idxs:
ret_idxs.append(idx)
ret_scores.append(score)
if len(ret_idxs) >= support_num:
break
rationale_idx += 1
except IndexError:
logger.error(
f"The index is out of range, please reduce support_num or increase support_threshold. Got {len(ret_idxs)} now."
)
return ret_idxs, ret_scores
def find_support_data():
"""
Find support data (which supports sparse data) from candidate dataset
"""
set_seed(args.seed)
paddle.set_device(args.device)
# Define model & tokenizer
if os.path.exists(args.params_path):
model = AutoModelForSequenceClassification.from_pretrained(args.params_path)
tokenizer = AutoTokenizer.from_pretrained(args.params_path)
else:
raise ValueError("The {} should exist.".format(args.params_path))
# Prepare & preprocess dataset
if args.annotate:
candidate_path = os.path.join(args.dataset_dir, args.unlabeled_file)
else:
candidate_path = os.path.join(args.dataset_dir, args.train_file)
sparse_path = os.path.join(args.dataset_dir, args.sparse_file)
support_path = os.path.join(args.dataset_dir, args.support_file)
candidate_ds = load_dataset(read_local_dataset, path=candidate_path, lazy=False)
sparse_ds = load_dataset(read_local_dataset, path=sparse_path, lazy=False)
trans_func = functools.partial(preprocess_function, tokenizer=tokenizer, max_seq_length=args.max_seq_length)
candidate_ds = candidate_ds.map(trans_func)
sparse_ds = sparse_ds.map(trans_func)
# Batchify dataset
collate_fn = LocalDataCollatorWithPadding(tokenizer)
candidate_batch_sampler = BatchSampler(candidate_ds, batch_size=args.batch_size, shuffle=False)
sparse_batch_sampler = BatchSampler(sparse_ds, batch_size=args.batch_size, shuffle=False)
candidate_data_loader = DataLoader(
dataset=candidate_ds, batch_sampler=candidate_batch_sampler, collate_fn=collate_fn
)
sparse_data_loader = DataLoader(dataset=sparse_ds, batch_sampler=sparse_batch_sampler, collate_fn=collate_fn)
# Classifier_layer_name is the layer name of the last output layer
feature_sim = FeatureSimilarityModel(model, candidate_data_loader, classifier_layer_name="classifier")
# Feature similarity analysis
analysis_result = []
for batch in sparse_data_loader:
analysis_result += feature_sim(batch, sample_num=args.rationale_num_support)
support_indexs, support_scores = get_support_data(analysis_result, args.support_num, args.support_threshold)
# Save the support data
if args.annotate or args.aug_strategy == "duplicate":
with open(support_path, "w") as f:
for idx in list(support_indexs):
data = candidate_ds.data[idx]
if "label" in data:
f.write(data["text"] + "\t" + data["label"] + "\n")
else:
f.write(data["text"] + "\n")
f.close()
else:
create_n = 1
aug_percent = 0.1
if args.aug_strategy == "substitute":
aug = WordSubstitute("embedding", create_n=create_n, aug_percent=aug_percent)
elif args.aug_strategy == "insert":
aug = WordInsert("embedding", create_n=create_n, aug_percent=aug_percent)
elif args.aug_strategy == "delete":
aug = WordDelete(create_n=create_n, aug_percent=aug_percent)
elif args.aug_strategy == "swap":
aug = WordSwap(create_n=create_n, aug_percent=aug_percent)
with open(support_path, "w") as f:
for idx in list(support_indexs):
data = candidate_ds.data[idx]
augs = aug.augment(data["text"])
if not isinstance(augs[0], str):
augs = augs[0]
for a in augs:
f.write(a + "\t" + data["label"] + "\n")
f.close()
logger.info("support data saved in {}".format(support_path))
logger.info("support average scores: {:.4f}".format(float(sum(support_scores)) / len(support_scores)))
if __name__ == "__main__":
find_sparse_data()
find_support_data()