-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzed_accelerometer.py
157 lines (126 loc) · 6.18 KB
/
zed_accelerometer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
########################################################################
#
# Copyright (c) 2021, STEREOLABS.
#
# All rights reserved.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
########################################################################
"""
This sample shows how to detect a human bodies and draw their
modelised skeleton in an OpenGL window
"""
import cv2
import sys
import time
import pyzed.sl as sl
import ogl_viewer.viewer as gl
import cv_viewer.tracking_viewer as cv_viewer
import numpy as np
def get_status_str(num_objs, linear_acc, angular_vel, positions):
s = f"{num_objs} objects detected\n"
#for body in positions:
# s += str(body.position)
s += f"Lin Acc: {linear_acc}, Ang Vel: {angular_vel}"
return s
def draw_status(num_objs, linear_acc, angular_vel, positions):
print(get_status_str(num_objs, linear_acc, angular_vel, positions))
sys.stdout.flush()
def remove_status(num_objs, linear_acc, angular_vel, positions):
print('\b' * len(get_status_str(num_objs, linear_acc, angular_vel, positions)))
sys.stdout.flush()
if __name__ == "__main__":
print("Running Body Tracking sample ... Press 'q' to quit")
# Create a Camera object
zed = sl.Camera()
# Create a InitParameters object and set configuration parameters
init_params = sl.InitParameters()
init_params.camera_resolution = sl.RESOLUTION.VGA # Use HD1080 video mode
init_params.camera_fps = 15
init_params.coordinate_units = sl.UNIT.METER # Set coordinate units
init_params.depth_mode = sl.DEPTH_MODE.ULTRA
init_params.coordinate_system = sl.COORDINATE_SYSTEM.RIGHT_HANDED_Y_UP
# If applicable, use the SVO given as parameter
# Otherwise use ZED live stream
if len(sys.argv) == 2:
filepath = sys.argv[1]
print("Using SVO file: {0}".format(filepath))
init_params.svo_real_time_mode = True
init_params.set_from_svo_file(filepath)
# Open the camera
err = zed.open(init_params)
if err != sl.ERROR_CODE.SUCCESS:
print("Failed to open camera!")
exit(1)
# Enable Positional tracking (mandatory for object detection)
positional_tracking_parameters = sl.PositionalTrackingParameters()
# If the camera is static, uncomment the following line to have better performances and boxes sticked to the ground.
# positional_tracking_parameters.set_as_static = True
zed.enable_positional_tracking(positional_tracking_parameters)
obj_param = sl.ObjectDetectionParameters()
obj_param.enable_body_fitting = True # Smooth skeleton move
obj_param.enable_tracking = True # Track people across images flow
obj_param.detection_model = sl.DETECTION_MODEL.HUMAN_BODY_FAST
obj_param.body_format = sl.BODY_FORMAT.POSE_18 # Choose the BODY_FORMAT you wish to use
# Enable Object Detection module
zed.enable_object_detection(obj_param)
obj_runtime_param = sl.ObjectDetectionRuntimeParameters()
obj_runtime_param.detection_confidence_threshold = 40
# Get ZED camera information
camera_info = zed.get_camera_information()
# 2D viewer utilities
display_resolution = sl.Resolution(min(camera_info.camera_resolution.width, 1280), min(camera_info.camera_resolution.height, 720))
image_scale = [display_resolution.width / camera_info.camera_resolution.width
, display_resolution.height / camera_info.camera_resolution.height]
# Create OpenGL viewer
viewer = gl.GLViewer()
viewer.init(camera_info.calibration_parameters.left_cam, obj_param.enable_tracking,obj_param.body_format)
# Create ZED objects filled in the main loop
bodies = sl.Objects()
image = sl.Mat()
sensors_data = sl.SensorsData()
while viewer.is_available():
# Grab an image
if zed.grab() == sl.ERROR_CODE.SUCCESS:
# Retrieve left image
zed.retrieve_image(image, sl.VIEW.LEFT, sl.MEM.CPU, display_resolution)
# Retrieve objects
zed.retrieve_objects(bodies, obj_runtime_param)
# print(len(bodies.object_list), " objects detected\n")
zed.get_sensors_data(sensors_data, sl.TIME_REFERENCE.IMAGE) # Retrieve only frame synchronized data
# Extract IMU data
imu_data = sensors_data.get_imu_data()
# Retrieve linear acceleration and angular velocity
linear_acceleration = imu_data.get_linear_acceleration()
angular_velocity = imu_data.get_angular_velocity()
# print(f"Linear Acceleration: {linear_acceleration}, Angular Velocity: {angular_velocity}")
# for body in bodies.object_list:
# print(body.position)
#remove_status(len(bodies.object_list), linear_acceleration, angular_velocity, bodies.object_list)
print("\n"*50)
time.sleep(0.01)
draw_status(len(bodies.object_list), linear_acceleration, angular_velocity, bodies.object_list)
# Update GL view
viewer.update_view(image, bodies)
# Update OCV view
image_left_ocv = image.get_data()
cv_viewer.render_2D(image_left_ocv,image_scale,bodies.object_list, obj_param.enable_tracking, obj_param.body_format)
cv2.imshow("ZED | 2D View", image_left_ocv)
cv2.waitKey(10)
viewer.exit()
image.free(sl.MEM.CPU)
# Disable modules and close camera
zed.disable_object_detection()
zed.disable_positional_tracking()
zed.close()