-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhanddetector.py
64 lines (53 loc) · 2.11 KB
/
handdetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import cv2
import time
import mediapipe as mp
class handdetector():
def __init__(self, mode = False, maxhands = 2, detectionconf = 0.5, trackconf = 0.5):
self.mode = mode
self.maxhands=maxhands
self.detectionconf=detectionconf
self.trackconf=trackconf
self.mpHand = mp.solutions.hands
self.hands = self.mpHand.Hands(static_image_mode=self.mode, max_num_hands=self.maxhands,
model_complexity=1, min_detection_confidence=self.detectionconf,
min_tracking_confidence=self.trackconf)
self.mpdraw = mp.solutions.drawing_utils
def findhands(self, img, draw = True):
imgRgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRgb)
#print(results.multi_hand_landmarks)
if self.results.multi_hand_landmarks:
for handLm in self.results.multi_hand_landmarks:
if draw:
self.mpdraw.draw_landmarks(img, handLm, self.mpHand.HAND_CONNECTIONS)
return img
def findPosition(self, img, handNo = 0, draw=True):
lmList=[]
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[handNo]
for id, lm in enumerate(myHand.landmark):
#print(id,lm)
h, w, c = img.shape
cx, cy = int(lm.x*w), int(lm.y*h)
#print(id, cx, cy)
lmList.append([id, cx, cy])
if draw:
cv2.circle(img, (cx,cy), 7, (0, 0, 0), cv2.FILLED)
return lmList
def main():
cTime, pTime = 0,0
cap = cv2.VideoCapture(0)
detector = handdetector()
while True:
success, img = cap.read()
img = detector.findhands(img)
lmList=detector.findPosition(img)
if len(lmList) !=0:
print(lmList[4])
cTime = time.time()
FPS = 1/(cTime-pTime)
pTime=cTime
cv2.imshow("Video", img)
cv2.waitKey(1)
if __name__ == "__main__":
main()