-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_single.py
257 lines (217 loc) · 9.64 KB
/
test_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import ast
from typing_extensions import Self
import numpy as np
import torch
import clip,clipS
from tqdm import tqdm
from pkg_resources import packaging
from test.classifierWeights import zeroshot_classifier,text_classfier_weights,get_pedestrian_metrics,get_pedestrian_metrics0
from data.pre_cls_pa100k import pa100kbaseDataset
from data.pre_peta_random import petabaseDataset
import pdb
import copy
from pytorch_lightning import Trainer
from argparse import ArgumentParser
from data.text_image_dm import TextImageDataModule,TextImageDataset
from models import CustomCLIPWrapper
from torch.utils.data import Dataset,DataLoader
import ast
import os
import pdb
import pickle
import torch.nn.functional as F
os.environ['TORCH-HOME']='/raid2/yue/torch-model'
device = "cuda" if torch.cuda.is_available() else "cpu"
k_value={"hair":0,"age":1,"gender":2,"carry":3,"accessory":4, "foot":5, "upperbody":6, "lowerbody":7} #peta
#k_value={"gender":0,"age":1,"body":2,"accessory":3,"carry":4,"upperbody":5, "lowerbody":6, "foot":7} #pa100k
#k_value={"gender":2,"age":1,"body":2,"accessory":4,"carry":3,"upperbody":6, "lowerbody":7, "foot":5} #peta->pa100k
thres={}
def load_model(hparams,model_path):
#加载模型
print("Torch version:", torch.__version__)
clip.available_models()
clp, _ = clip.load("ViT-B/16", device=device)
for p in clp.parameters():
p.data = p.data.float()
if p.grad:
p.grad.data = p.grad.data.float()
model = CustomCLIPWrapper(clp.transformer, hparams.minibatch_size, avg_word_embs=True)
model.model.token_embedding = clp.token_embedding
model.model.ln_final = clp.ln_final
model.model.text_projection = clp.text_projection
model.model.positional_embedding = clp.positional_embedding
model.model.logit_scale = clp.logit_scale
model.eval()
pdb.set_trace()
checkpoint=torch.load(model_path)
model.load_state_dict(checkpoint['state_dict'])
#model.load_state_dict(checkpoint.state_dict()) #23.3.18
model2=model.model.cuda()
model2.eval()
return model2
def load_peta(model):
keys=["gender","upperbody_1","upperbody_2","upperbody_3","lowerbody_1","lowerbody_2","lowerbody_3","age","hair_1","hair_2","foot_1","foot_2", "carry","accessory"]
root_path="/raid2/yue/datasets/Attribute-Recognition/PETA/PETA_select/PETAdata/"
petadata=petabaseDataset(root_path)
classes=petadata.classes
templates=petadata.templates
zeroshot_weights=text_classfier_weights(keys,classes,templates,model)
return zeroshot_weights, keys, petadata
def load_pa100k(model):
root_path="/raid2/yue/datasets/Attribute-Recognition/PETA/PETA_select/PETAdata/"
keys=["gender","age","body","accessory","carry","upperbody", "lowerbody", "foot"]
data=pa100kbaseDataset(root_path)
classes=data.classes
templates=data.templates
zeroshot_weights=text_classfier_weights(keys,classes,templates,model)
return zeroshot_weights, keys,data
def load_data(hparams,model):
root_dir="/home/xiaodui/Dataset/all_dataset/PAR/rebuilt.dataseta/dataset"
if hparams.testset=="PA100K":
test_root=os.path.join(root_dir,"PA-100K/PA100k_test/")
zeroshot_weights, keys,data=load_pa100k(model)
elif hparams.testset=="PA100KTrain":
test_root=os.path.join(root_dir,"PA-100K/PA100k_train_label/")
zeroshot_weights, keys,data=load_pa100k(model)
elif hparams.testset=="PETATrain":
test_root=os.path.join(root_dir,"PETAdata/PETA_train_label/")
zeroshot_weights, keys,data=load_peta(model)
else: #petatest
test_root=os.path.join(root_dir,"PETAdata/PETA_select_test/")
zeroshot_weights, keys,data=load_peta(model)
test_dataset=TextImageDataset(folder=test_root, image_size=hparams.imgSize, batch_size=hparams.minibatch_size)
dataloader=DataLoader(dataset=test_dataset, batch_size=hparams.minibatch_size, shuffle=False)
return dataloader,zeroshot_weights, keys,data
def accuracy(output, target, topk=(1,)):
pred = output.topk(max(topk), 1, True, True)[1].t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
return [float(correct[:k].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) for k in topk]
def get_images_item(hparams,dataloader,model,zeroshot_weights,data,keys):
classes=data.classes
gtlabels=data.labels
pred_logits=np.zeros((data.test_size,data.test_label_num)) #(90000,26) train
labels=np.zeros((data.test_size,data.test_label_num))
with torch.no_grad():
logits_all={}
t_num=0
for i, (image_tensor, description, name, label) in enumerate(dataloader):
#imgs=preprocess(Image.open(imgpath+name).convert('RGB'))
for la in label:
aa=ast.literal_eval(la)
labels[t_num]=aa[:data.test_label_num]
t_num+=1
image_tensor=image_tensor.cuda()
image_features, attention = model.encode_image(image_tensor,k_num=8)
for item in keys:
ite=item.split("_")[0]
k=int(k_value[ite])
#pdb.set_trace()
image_features[:,k,:] /= image_features[:,k,:].norm(dim=-1, keepdim=True)
logits = model.logit_scale.exp() * image_features[:,k,:] @ zeroshot_weights[item]
logits=logits.cpu()
if item in logits_all.keys():
logits_all[item]=torch.cat((logits_all[item],logits),0)
else:
logits_all[item]=logits
with open('train_logits.pkl', 'wb') as f:
pickle.dump({"logits_all": logits_all,"labels":labels}, f)
pred_logits=convert_logits(hparams,keys,classes,gtlabels,logits_all,pred_logits)
pred_label=copy.deepcopy(pred_logits)
Traverse_threshold(pred_logits,labels,pred_label)
def convert_logits(hparams,keys,classes,gtlabels,logits_all,pred_logits):
if "PA100K" in hparams.testset:
for item in keys:
print("item",item)
kn=item.split("_")
itemC=item
ite=item.split("_")[0]
for jth in range(len(classes[itemC])):
catg=classes[itemC][jth]
if catg in gtlabels[ite].keys():
index_t=gtlabels[ite][catg]
pred_logits[:,index_t]=(logits_all[item].numpy())[:,jth]
else:
for item in keys:
print("item",item)
kn=item.split("_")
ite=item.split("_")[0]
if len(kn)>1:
if kn[1]=='2':
itemC="color"
elif kn[1]=='3':
itemC="style"
else:
itemC=kn[0]
else:
itemC=item
for jth in range(len(classes[itemC])):
catg=classes[itemC][jth]
if catg in gtlabels[ite].keys():
index_t=gtlabels[ite][catg]
pred_logits[:,index_t]=(logits_all[item].numpy())[:,jth]
return pred_logits
def get_class(item,classes):
kn=item.split("_")
k1=kn[0]
if len(kn) > 1:
k2 = item.split("_")[1]
if k2=='1':
cls=classes[k1]
elif k2=='2':
cls=classes["color"]
else:
cls=classes["style"]
else:
cls=classes[k1]
return cls
def Traverse_threshold(logits,labels,pred_labels):
thres={}
accuracy={}
labels=np.array(labels)
# with open('results_peta_train.pkl', 'wb') as f:
# pickle.dump({"logits": logits,"labels":labels}, f)
#pdb.set_trace()
for i in range(len(logits[0])):
print(i,"-th col start search----")
sort_list=np.sort(logits[:,i])
d1=labels[:,i:i+1]
d2=logits[:,i:i+1]
a1=0
t1=0
for thre in sort_list:
a3,_=get_pedestrian_metrics(d1, d2,threshold=thre)
if a3.label_acc>a1: #label_acc,add_acc
a1=a3.label_acc
a2=copy.deepcopy(a3)
t1=thre
print("thres[",i,"] is:", t1)
print("the best label_acc is:",a2.label_acc)
thres[i]=t1
accuracy[i]=a2
a3,pred_label_best=get_pedestrian_metrics(d1, d2,threshold=t1)
pred_labels[:,i:i+1]=pred_label_best
acc=get_pedestrian_metrics0(labels, pred_labels)
print(acc)
pdb.set_trace()
return acc
def main(hparams):
#model_path="./lightning_logs/version_1_peta_b/checkpoints/epoch=99-step=33899.ckpt" \
#model_path="./lightning_logs/version_3/checkpoints/epoch=14-step=5084.ckpt"
model_path="/home/xiaodui/zy/PAR/TS/lightning_logs/version_1_peta_b/checkpoints/epoch=99-step=33899.ckpt"
#model_path="/home/xiaodui/zy/PAR/TS/stmodels/model_train_peta/model1.pth"
#加载模型
#pdb.set_trace()
model=load_model(hparams,model_path)
#加载数据
dataloader,zeroshot_weights, keys,data=load_data(hparams,model)
#测试数据
get_images_item(hparams,dataloader,model,zeroshot_weights,data,keys)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--minibatch_size', type=int, default=128)
parser = TextImageDataModule.add_argparse_args(parser)
parser = Trainer.add_argparse_args(parser)
parser.add_argument('--testset', type=str, required=True, help='[PA100K,PA100KTrain,PETA,PETATrain]')
parser.add_argument('--imgSize', type=int, default=224, help='input image size')
args = parser.parse_args()
main(args)