-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSecond_simulation_of_GB_propagation_through_an_axicon_pair.m
281 lines (221 loc) · 12 KB
/
Second_simulation_of_GB_propagation_through_an_axicon_pair.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
% Clear the memory, close all figures and clear the screen
clear; close; clc;
%Input Coordinate System
x_range = 10000 * 10 ^ (-6);
y_range = 10000 * 10 ^ (-6);
N = 4000;
period = x_range/N;
lambda = 828 * 10 ^ (-9);
nPixel = (-N/2:(N/2-1)); % create an array of the sample number, with zero in the centre
x = nPixel/N*x_range; % calculate the spatial coordinates
y = nPixel/N*y_range; % calculate the spatial coordinates
[X,Y] = meshgrid(x,y);
%Second Axicon Coordinate System
dx5 = period; %spatial period x-direction
dy5 = period; %spatial period y-direction
fx5=-1/(2*dx5):1/x_range:1/(2*dx5)-1/x_range; % calculate the FT coordinates(Scaled)
fy5=-1/(2*dy5):1/y_range:1/(2*dy5)-1/y_range; % calculate the FT coordinates(Scaled)
FT5_period = 1/y_range;
FT5_full_range = N/y_range;
[FX5,FY5] = meshgrid(fx5,fy5);
z4 = 120 * 10 ^(-3); % separation between two axicons
x_prime5 = fx5.*lambda.*z4; % calculate the FT spatial coordinates(Scaled)
y_prime5 = fy5.*lambda.*z4; % calculate the FT spatial coordinates(Scaled)
[X_prime5,Y_prime5] = meshgrid(x_prime5,y_prime5);
xprime5_period = FT5_period.*lambda.*z4;
xprime5_full_range = FT5_full_range.*lambda.*z4;
%OBSERV plane Coordinate System
dx6 = xprime5_period; %spatial period x-direction
dy6 = xprime5_period; %spatial period y-direction
fx6=-1/(2*dx6):1/xprime5_full_range:1/(2*dx6)-1/xprime5_full_range; % calculate the FT coordinates(Scaled)
fy6=-1/(2*dy6):1/xprime5_full_range:1/(2*dy6)-1/xprime5_full_range; % calculate the FT coordinates(Scaled)
FT6_period = 1/xprime5_full_range;
FT6_full_range = N/xprime5_full_range;
[FX6,FY6] = meshgrid(fx6,fy6);
z5 = 0.2; % position of the OBSERV plane
x_prime6 = fx6.*lambda.*z5; % calculate the FT spatial coordinates(Scaled)
y_prime6 = fy6.*lambda.*z5; % calculate the FT spatial coordinates(Scaled)
[X_prime6,Y_prime6] = meshgrid(x_prime6,y_prime6);
xprime6_period = FT6_period.*lambda.*z5;
xprime6_full_range = FT6_full_range.*lambda.*z5;
%Gaussian Input Beam
k = 2*pi/lambda;
A = 1;
w0 = 2700/2 * 10 ^ (-6);
zR = pi * w0 ^ 2/lambda; %Rayleigh range
z = 0; %distance(in m) from the beam waist at the position of the lens
t = 0;
rho = sqrt(X.^2 + Y.^2); %radial distance squared note the .^ rather than ^
if z == 0
Rz = Inf; %at beam waist plane wave
else
Rz = z + zR^2/z;%at z =! 0
end
[E_GB, I_GB, power] = getGB(A,z,lambda,w0,zR, t, rho, Rz);%Obtain GB profile and its total power
%plot GB input
figure(1);
pcolor(X, Y, I_GB);shading interp;colorbar;axis equal;
title('Input GB Intensity Profile, w0 = 2.7mm/2, zbef = 0m');
xlabel('x(m)')
ylabel('y(m)')
zlabel('Amplitude')
%%%%%%Propagation through Axicon%%%%%%
r_axi = 25.4 /2* 10 ^ (-3); %radius of axicon lens = 25.4mm
alpha = 5 * pi / 180; %5 degrees
R_exp = 1.0 * 10 ^(-3); %curvature of the axicon lens
e0 = 6.1 * 10 ^ (-3); %plane axicon thickness
n = 1.45; %refractive index of the axicon lens and converging lens
wz = w0 * sqrt( 1 + z^2 / zR^2); %beam radius
%%%%%Comparing with the geometric approximation -- Edmund optics%%%%%
ring_thick_geo = wz * sqrt(1 - n^2 * (sin(alpha))^2)/((cos(alpha)) * (n*(sin(alpha))^2 + (cos(alpha)) * sqrt(1 - n^2 * (sin(alpha))^2)));
ring_outer_radius_geo = z4 * (sin(alpha) * (n* cos(alpha) - sqrt(1 - n^2*(sin(alpha))^2)))/(n*(sin(alpha))^2 + cos(alpha) * sqrt(1 - n^2 * (sin(alpha))^2));
ring_inner_radius_geo = ring_outer_radius_geo - ring_thick_geo;
%Practical case Axicon doublet FFT
[U15,U19] = propTF2dim_DoublePracAxicon(E_GB,X,Y,X_prime5,Y_prime5,X_prime6,Y_prime6,k,n,r_axi,alpha,R_exp,e0,z4,z5);
I15= abs(U15.^2); %Intensity profile at the entrance of the second axicon
I19= abs(U19.^2); %Intensity profile at the OBSERV plane
%Manual Integration(prac)
surf_element = xprime6_period * xprime6_period;
FFT_power_manual = sum(I19 .* surf_element,'all');
I19 = I19 .* power/FFT_power_manual; %Rescaled intensity profile at OBSERV plane so the total power = GB power
FFT_power_manual_scl = sum(I19 .* surf_element,'all');
Power_check = sum(I19 .* surf_element,'all'); %should = GB power
%Fresnel Intensity Before Second PRAC Axicon
figure(5);
pcolor(X_prime5 * 1000,Y_prime5 * 1000, I15);shading interp;colorbar;axis equal;
title('Fresnel Intensity Before Second PRAC Axicon, zbef = 0,z4 = 120mm,z5 = 0.2m,Rexp = 0.6mm');
xlabel('xprime5(mm)')
ylabel('yprime5(mm)')
zlabel('Amplitude')
%Fresnel Intensity at OBSERV plane
figure(6);
pcolor(X_prime6 * 1000,Y_prime6 * 1000, I19);shading interp;colorbar;axis equal;
drawellipse('Center',[X_prime6(2001,2001) * 1000, Y_prime6(2001,2001) * 1000],'SemiAxes',[ring_outer_radius_geo * 1000, ring_outer_radius_geo * 1000],'StripeColor','w','HandleVisibility',"off","InteractionsAllowed","none");
drawellipse('Center',[X_prime6(2001,2001) * 1000, Y_prime6(2001,2001) * 1000],'SemiAxes',[ring_inner_radius_geo * 1000, ring_inner_radius_geo * 1000],'StripeColor','w','HandleVisibility',"off","InteractionsAllowed","none");
title('Fresnel Intensity at OBSERV plane, zbef = 0, z4 = 120mm,z5 = 0.2m,Rexp = 1.0mm');
xlabel('xprime6(mm)')
ylabel('yprime6(mm)')
zlabel('Amplitude')
caxis([0 0.25])
%1D Fresnel Intensity bef Second Axicon
figure(10);
plot(x_prime6 * 1000,I15(:,2001),'LineWidth',1);
xline(ring_outer_radius_geo * 1000, '-r','LineWidth',1)
xline(ring_inner_radius_geo * 1000, '-g','LineWidth',1)
title('1D Fresnel Intensity bef Second Axicon, IDEAL Axicon, zbef = 0, z4 = 120mm,z5 = 0.2m');
xlabel('xprime6(mm)')
ylabel('Amplitude')
%1D Fresnel Intensity at OBSERV plane
figure(7);
plot(x_prime6 * 1000,I19(:,2001),'LineWidth',1);
xline(ring_outer_radius_geo * 1000, '-r','LineWidth',1)
xline(ring_inner_radius_geo * 1000, '-g','LineWidth',1)
title('1D Fresnel Intensity at OBSERV plane,IDEAL Axicon, zbef = 0, z4 = 120mm,z5 = 0.2m');
xlabel('xprime6(mm)')
ylabel('Amplitude')
%%%%%%plot experimental data with simulation data%%%%%%%
load('Iexpdata','xaxis2','Icrop1vert');
load('Iexpdata2','Icrop950');
load('Iideal.mat','Iideal');
figure(8);
xaxis = linspace(-4.60 * 10 ^ (-3),4.50 * 10 ^ (-3),2010); %Reshape of exp data because the exp data ring size cannot be accurately measured
plot(xaxis*1000, 0.25/0.4 * Icrop1vert,'m','LineWidth',1) %Intensity of the exp data reduced to match the simulated data
hold on
plot(x_prime6 * 1000,I19(:,2001),'b','LineWidth',1);
hold on
plot(x_prime6 * 1000,0.25/0.12 * Iideal,'k--','LineWidth',1);
xline(ring_outer_radius_geo * 1000, '-r','LineWidth',1)
xline(ring_inner_radius_geo * 1000, '-g','LineWidth',1)
legend('Exp Seed Input Vertical','Simulation 2nd axicon decenter = 0.03axicon,CORRECTED axicon, zbef = 0, z4 = 120mm,z5 = 0.2m, Rexp = 1.0mm','Simulation no decenter,IDEAL axicon, zbef = 0, z4 = 120mm,z5 = 0.2m,')
title('Comparison between Exp and Sim with central maxima');
xlabel('xprime6(mm)')
ylabel('Amplitude')
xlim([-9.00,9.00])
ylim([0, 0.28])
%%%%%Ring power Content%%%%%
I19_crop = I19;
I19_crop(sqrt(X_prime6.^2 + Y_prime6.^2) < 0.3*ring_outer_radius_geo) = 0;
%Cropped Intensity at OBSERV plane
figure(9);
pcolor(X_prime6 * 1000,Y_prime6 * 1000, I19_crop);shading interp;colorbar;axis equal;
drawellipse('Center',[X_prime6(2001,2001) * 1000, Y_prime6(2001,2001) * 1000],'SemiAxes',[ring_outer_radius_geo * 1000, ring_outer_radius_geo * 1000],'StripeColor','w','HandleVisibility',"off","InteractionsAllowed","none");
drawellipse('Center',[X_prime6(2001,2001) * 1000, Y_prime6(2001,2001) * 1000],'SemiAxes',[0.3*ring_outer_radius_geo * 1000, 0.3*ring_outer_radius_geo * 1000],'StripeColor','w','HandleVisibility',"off","InteractionsAllowed","none");
title('Fresnel Intensity at OBSERV plane, ring power = 99.9%,zbef = 0, z4 = 120mm,z5 = 0.2m,Rexp = 0.1mm');
xlabel('xprime6(mm)')
ylabel('yprime6(mm)')
zlabel('Amplitude')
%Obtain ring power%
surf_element = xprime6_period * xprime6_period;
FFT_power_manual_crop = sum(I19_crop .* surf_element,'all');
ring_power = FFT_power_manual_crop/Power_check;
function[E_GB, I_GB, power] = getGB(A,z,lambda,w0,zR, t, rho, Rz)
%%%return GB field, intensity & total input power, power will be compared
%%%with the rescaled output FFT beam
%A: GB constant
%z: z_bef location of the beam at first optics relative to the beam
%waist
%w0: beam waist
%zR: Rayleigh range
%t: time
%rho: polor coordinate
%Rz: beam curvature
c = 3 * 10 ^8;
k = 2*pi/lambda; %wavevector
angularfreq = 2 * pi * c / lambda;
wz = w0 * sqrt( 1 + z^2 / zR^2); %beam radius
phi = atan(z/zR);
E_GB = A./sqrt(1 + z.^2/zR.^2) .* exp(1i .* (k.*z - angularfreq.*t)) .* exp( - rho.^2./wz.^2) .* exp(1i .* (k .* rho.^2./(2.*Rz))) .* exp(-1i .* phi);
I_GB = abs(E_GB.^2);
Integration_intensity = @(rho,theta) rho.*abs((A/sqrt(1 + z^2/zR^2) .* exp(1i * (k*z - angularfreq*t)) .* exp( - rho.^2./wz^2) .* exp(1i * (k * rho.^2./(2*Rz))) .* exp(-1i * phi)).^2);
power = integral2(Integration_intensity,0,Inf,0,2*pi);
end
function[U15,U19]=propTF2dim_DoublePracAxicon(u1,X_prime4,Y_prime4,X_prime5,Y_prime5,X_prime6,Y_prime6,k,n,r_axi,alpha,R_exp,e0,z4,z5)
% this funtion calculates de propagation of the field u over a distance z
% to the plane observation plane, the window size is the same for source
% and obesrvation plane
% Fraunhofer Diffraction Integral
% propagation - transfer function approach
% using fresnel approximation
% assumes equal side lengths for x and y
% uniform sampling
% u1 - source plane field
% X_prime4 - input beam coordinate
% y_prime4 - input beam coordinate
% X_prime5 - beam coordinate at second axicon
% y_prime5 - beam coordinate at second axicon
% X_prime6 - beam coordinate at OBSERV plane
% y_prime6 - beam coordinate at OBSERV plane
% k - wavevector (monochromatic approximation)
% n - refractive index of optics
% r_axi - radius of axicon
% alpha - conical lens base angle
% f - focal length
% R_exp - curvature of the pratical axicon
% e0 - plane axicon thickness
% z4 - separation between axicons
% z5 - position of OBSERV plane
%%%Transmission_through_axicon_first
%decenter = 0.03 * r_axi;
H2 = exp(-1i*k*(n-1)*(sqrt(X_prime4.^2 + Y_prime4.^2)).* tan(alpha)); %worktransfer function conical lens on paper
%thickness_function1 = e0 - R_exp .* (tan(alpha)).^2 .* sqrt(1 + ((X_prime4+decenter).^2 + Y_prime4.^2)./(R_exp .* tan(alpha)).^2);
thickness_function1 = e0 - R_exp .* (tan(alpha)).^2 .* sqrt(1 + ((X_prime4).^2 + Y_prime4.^2)./(R_exp .* tan(alpha)).^2);
H3 = exp(1i.*k.*(n-1).*thickness_function1); %transfer function of a single axicon
U12 = u1.*H3;
%%%Prop_to_second_axicon
factor4 = exp(0.5.*1i .* k ./z4.*(X_prime4.^2 + Y_prime4.^2));
U13 = fftshift(U12.*factor4); %field after first axicon
U14 = fftshift(fft2(U13)); %FFT of U2
U15 = -1i.*k./(2 .* pi).*exp(1i .* k .* z4)./z4 * exp((1i.*k./(2.*z4)).*(X_prime5.^2 + Y_prime5.^2)).*U14;
%%%Transmission_through_axicon_second
decenter = 0.03 * r_axi;
H4 = exp(-1i*k*(n-1)*(sqrt((X_prime5).^2 + Y_prime5.^2)).* tan(alpha)); %worktransfer function conical lens on paper
%thickness_function2 = e0 - R_exp .* (tan(alpha)).^2 .* sqrt(1 + ((X_prime5 + decenter).^2 + Y_prime5.^2)./(R_exp .* tan(alpha)).^2);
thickness_function2 = e0 - R_exp .* (tan(alpha)).^2 .* sqrt(1 + ((X_prime5).^2 + Y_prime5.^2)./(R_exp .* tan(alpha)).^2);
H5 = exp(1i.*k.*(n-1).*thickness_function2); %transfer function of a single axicon
U16 = U15.*H5;
%%%Prop_to_observ
factor5 = exp(0.5.*1i .* k ./z5.*(X_prime5.^2 + Y_prime5.^2));
U17=fftshift(U16.*factor5); %multiply U2: field after optics H
U18=fftshift(fft2(U17)); %inverse fft and center observ field
U19 = -1i.*k./(2 .* pi).*exp(1i .* k .* z5)./z5 .* exp((1i.*k./(2.*z5)).*(X_prime6.^2 + Y_prime6.^2)).*U18;
end