forked from haihabi/MD-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
md_gan_modules.py
86 lines (65 loc) · 2.87 KB
/
md_gan_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
from torch import nn
class ScaledSigmoid(nn.Module):
def __init__(self, scale: float = 5.0, shift: float = 2.5):
"""
The Scaled Sigmoid Module
:param scale: a float scale value
:param shift: a float shift value
"""
super(ScaledSigmoid, self).__init__()
self.scale = scale
self.shift = shift
def forward(self, x):
return self.scale * torch.sigmoid(x) - self.shift
class ScaledTanh(nn.Module):
def __init__(self, scale: float = 6.0):
"""
The Scaled Sigmoid Module
:param scale: a float scale value
"""
super(ScaledTanh, self).__init__()
self.scale = scale
def forward(self, x):
return self.scale * torch.tanh(x)
class FeedForwardSequential(nn.Module):
def __init__(self, input_dim: int, layers_dim: list, non_linear: nn.Module, output_non_linear: nn.Module):
super(FeedForwardSequential, self).__init__()
layers_dim = [input_dim, *layers_dim]
layers_list = []
for i in range(len(layers_dim) - 1):
layers_list.append(nn.Linear(layers_dim[i], layers_dim[i + 1]))
layers_list.append(output_non_linear() if i == (len(layers_dim) - 2) else non_linear())
self.layer_seq = nn.Sequential(*layers_list)
self.initialization()
def initialization(self):
for layer in self.layer_seq:
if isinstance(layer, nn.Linear):
torch.nn.init.normal_(layer.weight, mean=0, std=0.02)
def forward(self, x):
return self.layer_seq(x)
class Generator(nn.Module):
def __init__(self, z_dim, layers_dim: list = (128, 128, 2), non_linear=nn.ReLU, output_non_linear=ScaledTanh):
super(Generator, self).__init__()
self.feed_forward = FeedForwardSequential(input_dim=z_dim, layers_dim=layers_dim, non_linear=non_linear,
output_non_linear=output_non_linear)
def forward(self, x):
return self.feed_forward(x)
def leaky_relu():
return nn.LeakyReLU(negative_slope=0.2)
class Discriminator(nn.Module):
def __init__(self, e_dim, layers_dim: list = (128, 128), non_linear=leaky_relu,
output_non_linear=ScaledSigmoid, x_dim=2):
super(Discriminator, self).__init__()
layers_dim = [*list(layers_dim), e_dim]
self.feed_forward = FeedForwardSequential(input_dim=x_dim, layers_dim=layers_dim, non_linear=non_linear,
output_non_linear=output_non_linear)
def forward(self, x):
return self.feed_forward(x)
class LambdaNetwork(nn.Module):
def __init__(self, gmm_dim):
super(LambdaNetwork, self).__init__()
self.feed_forward = nn.Sequential(nn.Linear(1, gmm_dim), ScaledSigmoid())
def forward(self, x):
x = x.reshape(-1, 1)
return self.feed_forward(x)