Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[QA] Should we support GenerationConfig in vl models? #3083

Closed
3 tasks
zhulinJulia24 opened this issue Jan 24, 2025 · 1 comment · May be fixed by #3086
Closed
3 tasks

[QA] Should we support GenerationConfig in vl models? #3083

zhulinJulia24 opened this issue Jan 24, 2025 · 1 comment · May be fixed by #3086

Comments

@zhulinJulia24
Copy link
Collaborator

Checklist

  • 1. I have searched related issues but cannot get the expected help.
  • 2. The bug has not been fixed in the latest version.
  • 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.

Describe the bug

Should we support GenerationConfig in vl models ?

Reproduction

run script

from lmdeploy import pipeline
from lmdeploy.messages import PytorchEngineConfig, GenerationConfig

gen_config = GenerationConfig(max_new_tokens=500)
engine_config = PytorchEngineConfig(tp=1)
pipe = pipeline("/nvme/qa_test_models/meta-llama/Llama-3.2-11B-Vision-Instruct",  backend_config=engine_config)
res = pipe("Hi, pls introduce shanghai", gen_config)
print(res)

Environment

sys.platform: linux
Python: 3.10.12 (main, Nov  6 2024, 20:22:13) [GCC 11.4.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: x86_64-linux-gnu-gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.5.1+cu118
PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX512
  - CUDA Runtime 11.8
  - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90
  - CuDNN 90.1
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, 

TorchVision: 0.20.1+cu118
LMDeploy: 0.7.0+800b601
transformers: 4.48.0
gradio: 5.12.0
fastapi: 0.115.6
pydantic: 2.10.5
triton: 3.1.0
NVIDIA Topology: 
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    CPU Affinity    NUMA Affinity
GPU0     X      NV12    NV12    NV12    NV12    NV12    NV12    NV12    0-27,56-83      0
GPU1    NV12     X      NV12    NV12    NV12    NV12    NV12    NV12    0-27,56-83      0
GPU2    NV12    NV12     X      NV12    NV12    NV12    NV12    NV12    0-27,56-83      0
GPU3    NV12    NV12    NV12     X      NV12    NV12    NV12    NV12    0-27,56-83      0
GPU4    NV12    NV12    NV12    NV12     X      NV12    NV12    NV12    28-55,84-111    1
GPU5    NV12    NV12    NV12    NV12    NV12     X      NV12    NV12    28-55,84-111    1
GPU6    NV12    NV12    NV12    NV12    NV12    NV12     X      NV12    28-55,84-111    1
GPU7    NV12    NV12    NV12    NV12    NV12    NV12    NV12     X      28-55,84-111    1

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

Error traceback

Traceback (most recent call last):
  File "/__w/lmdeploy/lmdeploy/test_pipeline_new.py", line 7, in <module>
    res = pipe("Hi, pls introduce shanghai", gen_config)
TypeError: VLAsyncEngine.__call__() takes 2 positional arguments but 3 were given
@lvhan028
Copy link
Collaborator

Fixed in #3086

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants