From 78ab485e4a563e82f8d560e836ebeeec4a2c22b1 Mon Sep 17 00:00:00 2001 From: Willow Date: Fri, 8 Nov 2024 19:31:35 +0800 Subject: [PATCH] [Feature]: support LlavaForConditionalGeneration with turbomind inference (#2710) * feat: support llava_qwen2 for fp16 and awq * update generate gemm config script for VLM * lint: fix lint warning * doc: presenting the usage in the user guide * resolve conflict issue and refactor for better design * fix and doc: - fix tune attribute error - add chinese llava doc * keep LlavaLlamaForCausalLM/LlavaMistralForCausalLM to llama * fix attn_bias default value --- docs/en/multi_modal/llava.md | 138 +++++++++++++++++- docs/zh_cn/multi_modal/llava.md | 134 ++++++++++++++++- .../turbomind/deploy/source_model/__init__.py | 1 + .../turbomind/deploy/source_model/llava.py | 89 +++++++++++ lmdeploy/turbomind/generate_gemm_config.py | 4 + lmdeploy/turbomind/supported_models.py | 6 + 6 files changed, 370 insertions(+), 2 deletions(-) create mode 100644 lmdeploy/turbomind/deploy/source_model/llava.py diff --git a/docs/en/multi_modal/llava.md b/docs/en/multi_modal/llava.md index cf95e15d5c..8f052227d5 100644 --- a/docs/en/multi_modal/llava.md +++ b/docs/en/multi_modal/llava.md @@ -1,3 +1,139 @@ # LLaVA -TODO +LMDeploy supports the following llava series of models, which are detailed in the table below: + +| Model | Size | Supported Inference Engine | +| :----------------------------------: | :--: | :------------------------: | +| llava-hf/Llava-interleave-qwen-7b-hf | 7B | TurboMind, PyTorch | +| llava-hf/llava-1.5-7b-hf | 7B | TurboMind, PyTorch | +| liuhaotian/llava-v1.6-vicuna-7b | 7B | TurboMind, PyTorch | +| liuhaotian/llava-v1.6-mistral-7b | 7B | TurboMind, PyTorch | + +The next chapter demonstrates how to deploy an Llava model using LMDeploy, with [llava-hf/llava-interleave](https://huggingface.co/llava-hf/llava-interleave-qwen-7b-hf) as an example. + +## Installation + +Please install LMDeploy by following the [installation guide](../get_started/installation.md). + +Or, you can go with office docker image: + +```shell +docker pull openmmlab/lmdeploy:latest +``` + +## Offline inference + +The following sample code shows the basic usage of VLM pipeline. For detailed information, please refer to [VLM Offline Inference Pipeline](./vl_pipeline.md) + +```python +from lmdeploy import GenerationConfig, TurbomindEngineConfig, pipeline +from lmdeploy.vl import load_image + + +pipe = pipeline("llava-hf/llava-interleave-qwen-7b-hf", backend_config=TurbomindEngineConfig(cache_max_entry_count=0.5), + gen_config=GenerationConfig(max_new_tokens=512)) + +image = load_image('https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg') +prompt = 'Describe the image.' +print(f'prompt:{prompt}') +response = pipe((prompt, image)) +print(response) + +``` + +More examples are listed below: + +
+ + multi-image multi-round conversation, combined images + + +```python +from lmdeploy import pipeline, GenerationConfig + +pipe = pipeline('llava-hf/llava-interleave-qwen-7b-hf', log_level='INFO') +messages = [ + dict(role='user', content=[ + dict(type='text', text='Describe the two images in detail.'), + dict(type='image_url', image_url=dict(url='https://raw.githubusercontent.com/QwenLM/Qwen-VL/master/assets/mm_tutorial/Beijing_Small.jpeg')), + dict(type='image_url', image_url=dict(url='https://raw.githubusercontent.com/QwenLM/Qwen-VL/master/assets/mm_tutorial/Chongqing_Small.jpeg')) + ]) +] +out = pipe(messages, gen_config=GenerationConfig(top_k=1)) + +messages.append(dict(role='assistant', content=out.text)) +messages.append(dict(role='user', content='What are the similarities and differences between these two images.')) +out = pipe(messages, gen_config=GenerationConfig(top_k=1)) +``` + +
+ +## Online serving + +You can launch the server by the `lmdeploy serve api_server` CLI: + +```shell +lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf +``` + +You can also start the service using the aforementioned built docker image: + +```shell +docker run --runtime nvidia --gpus all \ + -v ~/.cache/huggingface:/root/.cache/huggingface \ + --env "HUGGING_FACE_HUB_TOKEN=" \ + -p 23333:23333 \ + --ipc=host \ + openmmlab/lmdeploy:latest \ + lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf +``` + +The docker compose is another option. Create a `docker-compose.yml` configuration file in the root directory of the lmdeploy project as follows: + +```yaml +version: '3.5' + +services: + lmdeploy: + container_name: lmdeploy + image: openmmlab/lmdeploy:latest + ports: + - "23333:23333" + environment: + HUGGING_FACE_HUB_TOKEN: + volumes: + - ~/.cache/huggingface:/root/.cache/huggingface + stdin_open: true + tty: true + ipc: host + command: lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf + deploy: + resources: + reservations: + devices: + - driver: nvidia + count: "all" + capabilities: [gpu] +``` + +Then, you can execute the startup command as below: + +```shell +docker-compose up -d +``` + +If you find the following logs after running `docker logs -f lmdeploy`, it means the service launches successfully. + +```text +HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!! +HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!! +HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!! +INFO: Started server process [2439] +INFO: Waiting for application startup. +INFO: Application startup complete. +INFO: Uvicorn running on http://0.0.0.0:23333 (Press CTRL+C to quit) +``` + +The arguments of `lmdeploy serve api_server` can be reviewed in detail by `lmdeploy serve api_server -h`. + +More information about `api_server` as well as how to access the service can be found from [here](api_server_vl.md) diff --git a/docs/zh_cn/multi_modal/llava.md b/docs/zh_cn/multi_modal/llava.md index cf95e15d5c..c40f37308a 100644 --- a/docs/zh_cn/multi_modal/llava.md +++ b/docs/zh_cn/multi_modal/llava.md @@ -1,3 +1,135 @@ # LLaVA -TODO +LMDeploy 支持以下 LLaVA 系列模型,具体如下表所示: + +| 模型 | 大小 | 支持的推理引擎 | +| :----------------------------------: | :--: | :----------------: | +| llava-hf/Llava-interleave-qwen-7b-hf | 7B | TurboMind, PyTorch | +| llava-hf/llava-1.5-7b-hf | 7B | TurboMind, PyTorch | +| liuhaotian/llava-v1.6-vicuna-7b | 7B | TurboMind, PyTorch | +| liuhaotian/llava-v1.6-mistral-7b | 7B | TurboMind, PyTorch | + +接下来的章节将演示如何使用 LMDeploy 部署 LLaVA 模型,并以 [llava-hf/llava-interleave](https://huggingface.co/llava-hf/llava-interleave-qwen-7b-hf) 为例。 + +## 安装 + +请按照[安装指南](../get_started/installation.md)安装 LMDeploy。 + +或者,您也可以使用官方的 Docker 镜像: + +```shell +docker pull openmmlab/lmdeploy:latest +``` + +## 离线推理 + +以下示例代码展示了 VLM pipeline 的基本用法。有关详细信息,请参考 [VLM 离线推理流程](./vl_pipeline.md)。 + +```python +from lmdeploy import GenerationConfig, TurbomindEngineConfig, pipeline +from lmdeploy.vl import load_image + +pipe = pipeline("llava-hf/llava-interleave-qwen-7b-hf", backend_config=TurbomindEngineConfig(cache_max_entry_count=0.5), + gen_config=GenerationConfig(max_new_tokens=512)) + +image = load_image('https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg') +prompt = 'Describe the image.' +print(f'prompt:{prompt}') +response = pipe((prompt, image)) +print(response) +``` + +更多示例: + +
+ 多图片多轮对话,组合图片 + +```python +from lmdeploy import pipeline, GenerationConfig + +pipe = pipeline('llava-hf/llava-interleave-qwen-7b-hf', log_level='INFO') +messages = [ + dict(role='user', content=[ + dict(type='text', text='Describe the two images in detail.'), + dict(type='image_url', image_url=dict(url='https://raw.githubusercontent.com/QwenLM/Qwen-VL/master/assets/mm_tutorial/Beijing_Small.jpeg')), + dict(type='image_url', image_url=dict(url='https://raw.githubusercontent.com/QwenLM/Qwen-VL/master/assets/mm_tutorial/Chongqing_Small.jpeg')) + ]) +] +out = pipe(messages, gen_config=GenerationConfig(top_k=1)) + +messages.append(dict(role='assistant', content=out.text)) +messages.append(dict(role='user', content='What are the similarities and differences between these two images.')) +out = pipe(messages, gen_config=GenerationConfig(top_k=1)) +``` + +
+ +## 在线服务 + +可以使用 `lmdeploy serve api_server` CLI 启动服务器: + +```shell +lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf +``` + +或者,使用前面提到的 Docker 镜像启动服务: + +```shell +docker run --runtime nvidia --gpus all \ + -v ~/.cache/huggingface:/root/.cache/huggingface \ + --env "HUGGING_FACE_HUB_TOKEN=" \ + -p 23333:23333 \ + --ipc=host \ + openmmlab/lmdeploy:latest \ + lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf +``` + +采用 Docker Compose 部署也是一种常见选择。在 lmdeploy 项目的根目录创建 `docker-compose.yml` 文件,如下: + +```yaml +version: '3.5' + +services: + lmdeploy: + container_name: lmdeploy + image: openmmlab/lmdeploy:latest + ports: + - "23333:23333" + environment: + HUGGING_FACE_HUB_TOKEN: + volumes: + - ~/.cache/huggingface:/root/.cache/huggingface + stdin_open: true + tty: true + ipc: host + command: lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf + deploy: + resources: + reservations: + devices: + - driver: nvidia + count: "all" + capabilities: [gpu] +``` + +然后,可以执行以下命令启动服务: + +```shell +docker-compose up -d +``` + +当运行 `docker logs -f lmdeploy` 后看到如下日志,说明服务启动成功: + +```text +HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!! +HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!! +HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!! +INFO: Started server process [2439] +INFO: Waiting for application startup. +INFO: Application startup complete. +INFO: Uvicorn running on http://0.0.0.0:23333 (Press CTRL+C to quit) +``` + +可以通过 `lmdeploy serve api_server -h` 查看 `lmdeploy serve api_server` 的参数详情。 + +关于 `api_server` 以及如何访问服务的更多信息可以在[这里](api_server_vl.md)找到。 diff --git a/lmdeploy/turbomind/deploy/source_model/__init__.py b/lmdeploy/turbomind/deploy/source_model/__init__.py index a36102e1c6..b1da698e2e 100644 --- a/lmdeploy/turbomind/deploy/source_model/__init__.py +++ b/lmdeploy/turbomind/deploy/source_model/__init__.py @@ -5,6 +5,7 @@ from .internlm2 import InternLM2Model # noqa: F401 from .internvl import InternVLModel # noqa: F401 from .llama import LlamaModel # noqa: F401 +from .llava import LlavaModel # noqa: F401 from .meta_llama import MetaLlamaModel # noqa: F401 from .minicpmv import MiniCPMVModel # noqa: F401 from .mixtral import MixtralModel # noqa: F401 diff --git a/lmdeploy/turbomind/deploy/source_model/llava.py b/lmdeploy/turbomind/deploy/source_model/llava.py new file mode 100644 index 0000000000..3b4d82c37b --- /dev/null +++ b/lmdeploy/turbomind/deploy/source_model/llava.py @@ -0,0 +1,89 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import json +import os.path as osp + +from .base import INPUT_MODELS +from .llama import LlamaModel, LlamaReader + + +class LlavaReader(LlamaReader): + """LlavaReader for llama model.""" + + attn_layer_prefix = 'language_model.model.layers' + attn_layer_patten = r'language_model.model.layers.([0-9]+).' + tok_embeddings_key = 'language_model.model.embed_tokens.weight' + norm_weight_key = 'language_model.model.norm.weight' + output_weight_key = 'language_model.lm_head.weight' + + def __init__(self, new_params: dict, unused_params: dict, last_bin: bool, + model_cfg: dict, policy): + model_cfg = model_cfg.get('text_config') + super().__init__(new_params, unused_params, last_bin, model_cfg, + policy) + + +@INPUT_MODELS.register_module(name='llava') +class LlavaModel(LlamaModel): + """LlavaModel model in hf format.""" + + def __init__(self, model_path: str, tokenizer_path: str, **kwargs): + super().__init__(model_path, tokenizer_path, **kwargs) + from transformers import AutoConfig + config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) + config = getattr(config, 'text_config', config) + arch = config.architectures[0] + _readers = dict(Qwen2ForCausalLM=LlavaReader, + LlamaForCausalLM=LlavaReader) + self.Reader = _readers[arch] + self.arch = arch + + def model_info(self): + """Read model info for LlavaForConditionalGeneration. + + https://huggingface.co/llava-hf/llava-interleave-qwen-7b-hf + """ + params_path = osp.join(self.model_path, 'config.json') + with open(params_path) as f: + model_arg = json.load(f)['text_config'] + num_layer = model_arg.get('num_hidden_layers', 32) + norm_eps = model_arg.get('rms_norm_eps', 1e-6) + attn_head_num = model_arg.get('num_attention_heads', 32) + if 'num_key_value_heads' in model_arg: + kv_head_num = model_arg.get('num_key_value_heads', 32) + else: + kv_head_num = model_arg.get('num_attention_heads', 32) + rope_theta = float(model_arg.get('rope_theta', 10000.0)) + max_position_embeddings = int( + model_arg.get('max_position_embeddings', 0)) + rope_scaling = model_arg.get('rope_scaling', None) + scaling_factor = 0.0 + use_dynamic_ntk = 0 + + # special for the model: llava-hf/llava-interleave-qwen-7b-hf + hidden_units = model_arg.get('hidden_size', 4096) + vocab_size = model_arg.get('vocab_size', 152000) + intermediate_size = model_arg.get('intermediate_size', 11008) + attn_bias = 1 if model_arg['architectures'][0] \ + == 'Qwen2ForCausalLM' else 0 + attn_bias = int(model_arg.get('attn_bias', attn_bias)) + use_logn_attn = int(model_arg.get('use_logn_attn', 0)) + + if isinstance(rope_scaling, dict): + scaling_type = model_arg['rope_scaling'].get('type', '') + scaling_factor = model_arg['rope_scaling'].get('factor', '') + if scaling_type == 'dynamic': + use_dynamic_ntk = 1 + + return dict(num_layer=num_layer, + norm_eps=norm_eps, + head_num=attn_head_num, + hidden_units=hidden_units, + kv_head_num=kv_head_num, + rope_theta=rope_theta, + max_position_embeddings=max_position_embeddings, + use_dynamic_ntk=use_dynamic_ntk, + rope_scaling_factor=scaling_factor, + inter_size=intermediate_size, + use_logn_attn=use_logn_attn, + attn_bias=attn_bias, + vocab_size=vocab_size) diff --git a/lmdeploy/turbomind/generate_gemm_config.py b/lmdeploy/turbomind/generate_gemm_config.py index 91b057d723..34e769776f 100644 --- a/lmdeploy/turbomind/generate_gemm_config.py +++ b/lmdeploy/turbomind/generate_gemm_config.py @@ -54,10 +54,14 @@ def main(head_num: int = 32, from transformers import AutoConfig config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) + + for key in ['language_config', 'llm_config', 'text_config']: + config = getattr(config, key, config) head_num = config.num_attention_heads size_per_head = config.hidden_size // head_num inter_size = config.intermediate_size vocab_size = config.vocab_size + for bsz in range(1, max_batch_size + 1): subprocess.call( f'{get_llama_gemm()} {bsz} 1 1 {head_num} {size_per_head}' diff --git a/lmdeploy/turbomind/supported_models.py b/lmdeploy/turbomind/supported_models.py index 979ed0c547..fe0819d70f 100644 --- a/lmdeploy/turbomind/supported_models.py +++ b/lmdeploy/turbomind/supported_models.py @@ -25,6 +25,7 @@ # llava LlavaLlamaForCausalLM='llama', LlavaMistralForCausalLM='llama', + LlavaForConditionalGeneration='llava', # xcomposer2 InternLMXComposer2ForCausalLM='xcomposer2', # internvl @@ -95,5 +96,10 @@ def _is_head_dim_supported(cfg): support_by_turbomind = False elif arch == 'InternVLChatModel': support_by_turbomind = _is_head_dim_supported(cfg.llm_config) + elif arch == 'LlavaForConditionalGeneration': + sub_arch = cfg.text_config.architectures[0] + if sub_arch in ['Qwen2ForCausalLM', 'LlamaForCausalLM']: + support_by_turbomind = _is_head_dim_supported( + cfg.text_config) return support_by_turbomind