-
Notifications
You must be signed in to change notification settings - Fork 69
/
test-configuration-linux.yml
57 lines (57 loc) · 2.63 KB
/
test-configuration-linux.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#===============================================================================
# Copyright 2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#===============================================================================
steps:
- task: UsePythonVersion@0
displayName: "Use Python $(PYTHON_VERSION)"
inputs:
versionSpec: "$(PYTHON_VERSION)"
- script: |
conda create -y -n bench-env -c conda-forge -c nodefaults python=$(PYTHON_VERSION)
displayName: Environment initialization
- script: |
source /usr/share/miniconda/etc/profile.d/conda.sh
conda activate bench-env
pip install -r envs/requirements-sklearn.txt
pip list
displayName: Install requirements via pip
condition: eq(variables['PKG_MANAGER'], 'pip')
- script: |
source /usr/share/miniconda/etc/profile.d/conda.sh
conda activate bench-env
conda env update -f envs/conda-env-sklearn.yml -n bench-env
conda list
displayName: Install requirements via conda
condition: eq(variables['PKG_MANAGER'], 'conda')
- script: |
source /usr/share/miniconda/etc/profile.d/conda.sh
conda activate bench-env
python -m sklbench --report -l DEBUG --report -p algorithm:library=sklearn,sklearnex algorithm:estimator=PCA,KMeans,ElasticNet,KNeighborsClassifier data:dataset=skin_segmentation data:split_kwargs:train_size=5000 data:split_kwargs:test_size=5000
displayName: CLI arguments example run
- script: |
source /usr/share/miniconda/etc/profile.d/conda.sh
conda activate bench-env
python -m sklbench --report -l DEBUG --report -c configs/sklearn_example.json
displayName: Sklearn example run
- script: |
source /usr/share/miniconda/etc/profile.d/conda.sh
conda activate bench-env
python -m sklbench --report -l DEBUG --report -c configs/xgboost_example.json
displayName: XGBoost example run
- script: |
source /usr/share/miniconda/etc/profile.d/conda.sh
conda activate bench-env
python -m sklbench -l INFO -c configs/testing/azure-pipelines-ci.json --prefetch-datasets --report --diff-cols library --compatibility-mode
displayName: CI config run