-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path交叉验证保存模型并断点恢复模型.py
202 lines (136 loc) · 6.46 KB
/
交叉验证保存模型并断点恢复模型.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# coding: utf-8
# In[1]:
import os
os.environ['TF_CPP_MIN_LOGLEVEL']="2"
os.environ['CUDA_DEVICE_ORDER']="PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES']="0"
# In[10]:
import logging
from torch import nn
from torch import optim
# from torch.optim.lr_scheduler import MultiStepLR
from torch.autograd import Variable
from torch.utils.data import DataLoader
from PIL import Image
from tqdm import tqdm
import torch
import numpy as np
from pspnet_Copy1 import PSPNet
from dataset import ADE20KLoader
from torchvision.transforms import Compose,ToTensor,Normalize
from augmentation import Scale,RandomRotation,CenterCrop,RandomHorizontalFlip,ToLabel
from metrics import runningScore
# In[11]:
num_classes=151
batch_size=4
models = {
'squeezenet': lambda: PSPNet(num_classes,sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='squeezenet'),
'densenet': lambda: PSPNet(num_classes,sizes=(1, 2, 3, 6), psp_size=1024, deep_features_size=512, backend='densenet'),
'resnet18': lambda: PSPNet(num_classes,sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='resnet18'),
'resnet34': lambda: PSPNet(num_classes,sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='resnet34'),
'resnet50': lambda: PSPNet(num_classes,sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet50'),
'resnet101': lambda: PSPNet(num_classes,sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet101'),
'resnet152': lambda: PSPNet(num_classes,sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet152')
}
# In[12]:
#snapshot存放的是预训练的权重
def build_network(snapshot, backend):
epoch = 0
backend = backend.lower()
net = models[backend]()
net = nn.DataParallel(net)
if snapshot is not None:
# _, epoch = os.path.basename(snapshot).split('_')
epoch = 12
net.load_state_dict(torch.load(snapshot))
logging.info("Snapshot for epoch {} loaded from {}".format(epoch, snapshot))
net = net.cuda()
return net, epoch
# In[13]:
def poly_lr_scheduler(optimizer, init_lr, iter, lr_decay_iter=1,
max_iter=100, power=0.9):
if iter % lr_decay_iter or iter > max_iter:#每lr_decay_iter下降,不等于0时返回
return optimizer
lr = init_lr*(1 - float(iter)/max_iter)**power
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
# # 加载数据
# In[14]:
input_transform=Compose([
Scale((256,256),Image.BILINEAR),
ToTensor(),
Normalize([.485, .456, .406], [.229, .224, .225]),
])
target_transform=Compose([
Scale((256,256),Image.NEAREST),
ToLabel()
])
data_augs=Compose([
RandomHorizontalFlip(),
RandomRotation(),
])
train_loader=DataLoader(ADE20KLoader("/home/lulu/FCN_VGG19/ADEChallengeData2016/",split='training',
input_transform=input_transform,
target_transform=target_transform,augamentation=data_augs),num_workers=2,batch_size=batch_size,shuffle=True)
val_loader=DataLoader(ADE20KLoader("/home/lulu/FCN_VGG19/ADEChallengeData2016/",split='validation',
input_transform=input_transform,
target_transform=target_transform,augamentation=data_augs),num_workers=2,batch_size=batch_size,shuffle=True)
def train( models_path, backend, snapshot, alpha, epochs, init_lr, ):
# os.environ["CUDA_VISIBLE_DEVICES"] = gpu
net, starting_epoch = build_network(snapshot, backend)
# net.train()
models_path = os.path.abspath(os.path.expanduser(models_path))
os.makedirs(models_path, exist_ok=True)
class_weights = torch.ones(num_classes).cuda()
class_weight=torch.ones(batch_size,num_classes).cuda()
optimizer = optim.Adam(net.parameters(), lr=start_lr,weight_decay=0.0001)
# Setup Metrics
running_metrics = runningScore(num_classes)
best_iou = -100.0
#从断点出恢复训练
for epoch in range(starting_epoch, starting_epoch + epochs):
seg_criterion = nn.NLLLoss2d(weight=class_weights)
# cls_criterion = nn.BCEWithLogitsLoss(weight=class_weights)#二分类
epoch_losses = []
train_iterator = tqdm(train_loader, total=len(train_loader))
net.train()
for x, y, y_cls in train_iterator:
optimizer.zero_grad()
x, y, y_cls = Variable(x).cuda(), Variable(y).cuda(), Variable(y_cls).cuda()
# #y:torch.Size([16, 1, 256, 256])
out, out_cls = net(x)
# print('out_cls:',out_cls.size())#16,150,256,256
seg_loss = seg_criterion(out, y.squeeze(1))
cls_loss = seg_criterion(out_cls, y.squeeze(1))
loss = seg_loss + alpha * cls_loss
epoch_losses.append(loss.data[0])
status = '[{0}] loss = {1:0.5f} avg = {2:0.5f}, '.format(epoch + 1, loss.data[0], np.mean(epoch_losses))
train_iterator.set_description(status)#tadm中可以打印信息
loss.backward()
optimizer.step()
net.eval()
for i_val, (images_val, labels_val,label_cls) in tqdm(enumerate(val_loader)):
images_val = Variable(images_val.cuda(), volatile=True)
labels_val = Variable(labels_val.cuda(), volatile=True)
outputs,outputs_cls = net(images_val)#outputs=batch,num_classes,H,W
pred = outputs.data.max(1)[1].cpu().numpy()
gt = labels_val.data.cpu().numpy()
running_metrics.update(gt, pred)
score, class_iou = running_metrics.get_scores()
running_metrics.reset()
if score['Mean IoU : \t'] >= best_iou:
best_iou = score['Mean IoU : \t']
print("{}_{}_best_model.pkl".format(os.path.join(models_path,'PSPNet'), 'ADEK'))
torch.save(net.state_dict(), "{}_{}_best_model.pkl".format(os.path.join(models_path,'PSPNet'), 'ADEK'))
poly_lr_scheduler(optimizer, init_lr,epoch , lr_decay_iter=10,max_iter=100, power=0.9)
# torch.save(net.state_dict(), os.path.join(models_path, '_'.join(["PSPNet", str(epoch + 1)])))
#定义参数
models_path='checkpoint'
backend='resnet101'
snapshot='checkpoint/PSPNet_ADEK_best_model.pkl'
alpha=0.4
epochs=88
start_lr=0.01
if __name__ == '__main__':
train(models_path,backend,snapshot,alpha,epochs,start_lr)