-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseg_auto_validate.py
520 lines (434 loc) · 18.5 KB
/
seg_auto_validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import argparse
import os
from collections import OrderedDict
from glob import glob
import cv2
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
import yaml
from albumentations.augmentations import transforms
from albumentations.core.composition import Compose, OneOf
from sklearn.model_selection import train_test_split
from torch.optim import lr_scheduler
from tqdm import tqdm
import archs
import losses
from dataset import SegmentationDataset
from metrics import iou_score
from metrics import dice_coef
from utils import AverageMeter, str2bool
ARCH_NAMES = archs.__all__
LOSS_NAMES = losses.__all__
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--name', default=None,
help='model name: (default: arch+timestamp)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch_size', default=16, type=int,
metavar='N', help='mini-batch size (default: 16)')
# model
parser.add_argument('--arch', '-a', metavar='ARCH', default='NestedUNet',
choices=ARCH_NAMES,
help='model architecture: ' +
' | '.join(ARCH_NAMES) +
' (default: NestedUNet)')
parser.add_argument('--input_channels', default=3, type=int,
help='input channels')
parser.add_argument('--num_classes', default=1, type=int,
help='number of classes')
parser.add_argument('--input_w', default=96, type=int,
help='image width')
parser.add_argument('--input_h', default=96, type=int,
help='image height')
# loss
parser.add_argument('--loss', default='BCEDiceLoss',
choices=LOSS_NAMES,
help='loss: ' +
' | '.join(LOSS_NAMES) +
' (default: BCEDiceLoss)')
# dataset
parser.add_argument('--dataset', default='dsb2018_96',
help='dataset name')
parser.add_argument('--img_ext', default='.png',
help='image file extension')
parser.add_argument('--mask_ext', default='.png',
help='mask file extension')
# optimizer
parser.add_argument('--optimizer', default='SGD',
choices=['Adam', 'SGD'],
help='loss: ' +
' | '.join(['Adam', 'SGD']) +
' (default: Adam)')
parser.add_argument('--lr', '--learning_rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
help='momentum')
parser.add_argument('--weight_decay', default=1e-4, type=float,
help='weight decay')
parser.add_argument('--nesterov', default=False, type=str2bool,
help='nesterov')
# scheduler
parser.add_argument('--scheduler', default='CosineAnnealingLR',
choices=['CosineAnnealingLR', 'ReduceLROnPlateau', 'MultiStepLR', 'ConstantLR'])
parser.add_argument('--min_lr', default=1e-5, type=float,
help='minimum learning rate')
parser.add_argument('--factor', default=0.1, type=float)
parser.add_argument('--patience', default=2, type=int)
parser.add_argument('--milestones', default='1,2', type=str)
parser.add_argument('--gamma', default=2/3, type=float)
parser.add_argument('--early_stopping', default=-1, type=int,
metavar='N', help='early stopping (default: -1)')
parser.add_argument('--num_workers', default=4, type=int)
config = parser.parse_args()
return config
def train(config, train_loader, model, criterion, optimizer):
avg_meters = {'loss': AverageMeter(),
'iou': AverageMeter(),
'dice': AverageMeter()}
model.train()
pbar = tqdm(total=len(train_loader))
for input, target, _ in train_loader:
input = input.cuda()
target = target.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
iou = iou_score(output, target)
dice = dice_coef(output, target)
# compute gradient and do optimizing step
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_meters['loss'].update(loss.item(), input.size(0))
avg_meters['iou'].update(iou, input.size(0))
avg_meters['dice'].update(dice, input.size(0))
postfix = OrderedDict([
('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
('dice', avg_meters['dice'].avg),
])
pbar.set_postfix(postfix)
pbar.update(1)
pbar.close()
return OrderedDict([('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
('dice', avg_meters['dice'].avg)])
def validate(config, val_loader, model, criterion):
avg_meters = {'loss': AverageMeter(),
'iou': AverageMeter(),
'dice': AverageMeter(),}
# switch to evaluate mode
model.eval()
with torch.no_grad():
pbar = tqdm(total=len(val_loader))
for input, target, _ in val_loader:
input = input.cuda()
target = target.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
iou = iou_score(output, target)
dice = dice_coef(output, target)
avg_meters['loss'].update(loss.item(), input.size(0))
avg_meters['iou'].update(iou, input.size(0))
avg_meters['dice'].update(dice, input.size(0))
postfix = OrderedDict([
('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
('dice', avg_meters['dice'].avg)
])
pbar.set_postfix(postfix)
pbar.update(1)
pbar.close()
return OrderedDict([('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
('dice', avg_meters['dice'].avg)])
def main_func(train_groups, val_group, modelName, fileName):
config = vars(parse_args())
config['name'] = modelName
fw = open('batch_results_train/'+ fileName, 'w')
print('config of dataset is ' + str(config['dataset']))
fw.write('config of dataset is ' + str(config['dataset']) + '\n')
if config['name'] is None:
config['name'] = '%s_%s_woDS' % (config['dataset'], config['arch'])
os.makedirs('models/%s' % config['name'], exist_ok=True)
print('-' * 20)
fw.write('-' * 20 + '\n')
for key in config:
print('%s: %s' % (key, config[key]))
fw.write('%s: %s' % (key, config[key]) + '\n')
print('-' * 20)
fw.write('-' * 20 + '\n')
with open('models/%s/config.yml' % config['name'], 'w') as f:
yaml.dump(config, f)
# define loss function (criterion)
if config['loss'] == 'BCEWithLogitsLoss':
criterion = nn.BCEWithLogitsLoss().cuda()
else:
criterion = losses.__dict__[config['loss']]().cuda()
cudnn.benchmark = True
# create model
print("=> creating model %s" % config['arch'])
fw.write("=> creating model %s" % config['arch'] + '\n')
model = archs.__dict__[config['arch']](config['num_classes'],
config['input_channels'])
model = model.cuda()
params = filter(lambda p: p.requires_grad, model.parameters())
if config['optimizer'] == 'Adam':
optimizer = optim.Adam(
params, lr=config['lr'], weight_decay=config['weight_decay'])
elif config['optimizer'] == 'SGD':
optimizer = optim.SGD(params, lr=config['lr'], momentum=config['momentum'],
nesterov=config['nesterov'], weight_decay=config['weight_decay'])
else:
raise NotImplementedError
if config['scheduler'] == 'CosineAnnealingLR':
scheduler = lr_scheduler.CosineAnnealingLR(
optimizer, T_max=config['epochs'], eta_min=config['min_lr'])
elif config['scheduler'] == 'ReduceLROnPlateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, factor=config['factor'], patience=config['patience'],
verbose=1, min_lr=config['min_lr'])
elif config['scheduler'] == 'MultiStepLR':
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[int(e) for e in config['milestones'].split(',')], gamma=config['gamma'])
elif config['scheduler'] == 'ConstantLR':
scheduler = None
else:
raise NotImplementedError
# Data loading code
img_ids = glob(os.path.join('inputs', config['dataset'], 'images', '*' + config['img_ext']))
img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids]
train_ids = []
for train_group in train_groups:
with open(train_group + '.txt', 'r') as file:
train_ids.append([line.rstrip() for line in file])
train_ids = train_ids[0] + train_ids[1] + train_ids[2]
val_ids = []
with open(val_group + '.txt', 'r') as file:
val_ids = [line.rstrip() for line in file]
val_img_ids = []
train_img_ids = []
for image in img_ids:
im_begin = image.split('_')[0]
if im_begin in val_ids:
val_img_ids.append(image)
elif im_begin in train_ids:
train_img_ids.append(image)
# train_transform = Compose([
# transforms.Resize(config['input_h'], config['input_w']),
# transforms.Normalize(),
# ])
# val_transform = Compose([
# transforms.Resize(config['input_h'], config['input_w']),
# transforms.Normalize(),
# ])
transform = Compose([
transforms.Resize(config['input_h'], config['input_w']),
transforms.Normalize(),
])
train_dataset = SegmentationDataset(
img_ids=train_img_ids,
img_dir=os.path.join('inputs', config['dataset'], 'images'),
mask_dir=os.path.join('inputs', config['dataset'], 'masks'),
img_ext=config['img_ext'],
mask_ext=config['mask_ext'],
num_classes=config['num_classes'],
transform=transform)
val_dataset = SegmentationDataset(
img_ids=val_img_ids,
img_dir=os.path.join('inputs', config['dataset'], 'images'),
mask_dir=os.path.join('inputs', config['dataset'], 'masks'),
img_ext=config['img_ext'],
mask_ext=config['mask_ext'],
num_classes=config['num_classes'],
transform=transform)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config['batch_size'],
shuffle=True,
num_workers=config['num_workers'],
drop_last=True)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers'],
drop_last=False)
log = OrderedDict([
('epoch', []),
('lr', []),
('loss', []),
('iou', []),
('dice', []),
('val_loss', []),
('val_iou', []),
('val_dice', []),
])
#best_iou = 0
trigger = 0
best_dice = 0
for epoch in range(config['epochs']):
print('Epoch [%d/%d]' % (epoch, config['epochs']))
fw.write('Epoch [%d/%d]' % (epoch, config['epochs']) + '\n')
# train for one epoch
train_log = train(config, train_loader, model, criterion, optimizer)
# evaluate on validation set
val_log = validate(config, val_loader, model, criterion)
if config['scheduler'] == 'CosineAnnealingLR':
scheduler.step()
elif config['scheduler'] == 'ReduceLROnPlateau':
scheduler.step(val_log['loss'])
print('loss %.4f - iou %.4f - dice %.4f - val_loss %.4f - val_iou %.4f val_dice %.4f'
% (train_log['loss'], train_log['iou'], train_log['dice'], val_log['loss'], val_log['iou'], val_log['dice']))
fw.write('loss %.4f - iou %.4f - dice %.4f - val_loss %.4f - val_iou %.4f val_dice %.4f'
% (train_log['loss'], train_log['iou'], train_log['dice'], val_log['loss'], val_log['iou'], val_log['dice']) + '\n')
log['epoch'].append(epoch)
log['lr'].append(config['lr'])
log['loss'].append(train_log['loss'])
log['iou'].append(train_log['iou'])
log['dice'].append(train_log['dice'])
log['val_loss'].append(val_log['loss'])
log['val_iou'].append(val_log['iou'])
log['val_dice'].append(val_log['dice'])
pd.DataFrame(log).to_csv('models/%s/log.csv' %
config['name'], index=False)
trigger += 1
if val_log['dice'] > best_dice:
torch.save(model.state_dict(), 'models/%s/model.pth' %
config['name'])
best_dice = val_log['dice']
print("=> saved best model")
fw.write("=> saved best model" + '\n')
trigger = 0
# early stopping
if config['early_stopping'] >= 0 and trigger >= config['early_stopping']:
print("=> early stopping")
fw.write("=> early stopping" + '\n')
break
torch.cuda.empty_cache()
def perform_validation(modelName, test_group, fileName):
#args = parse_args()
fw = open('batch_results_test/' + fileName, 'w')
#with open('models/%s/config.yml' % args.name, 'r') as f:
with open('models/%s/config.yml' % modelName, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
#config['dataset'] = 'ax_crop_val_' + str(testNum) + '_' + str(testNum + 1)
print('-'*20)
fw.write('-'*20 + '\n')
for key in config.keys():
print('%s: %s' % (key, str(config[key])))
fw.write('%s: %s' % (key, str(config[key])) + '\n')
print('-'*20)
fw.write('-'*20 + '\n')
cudnn.benchmark = True
# create model
print("=> creating model %s" % config['arch'])
fw.write("=> creating model %s" % config['arch'] + '\n')
model = archs.__dict__[config['arch']](config['num_classes'],
config['input_channels'])
model = model.cuda()
# Data loading code
img_ids = glob(os.path.join('inputs', config['dataset'], 'images', '*' + config['img_ext']))
img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids]
#_, val_img_ids = train_test_split(img_ids, test_size=0.99, random_state=41)
test_idx = []
with open(test_group + '.txt', 'r') as file:
test_idx = [line.rstrip() for line in file]
test_img_ids = []
for img in img_ids:
im_begin = img.split('_')[0]
if im_begin in test_idx:
test_img_ids.append(img)
model.load_state_dict(torch.load('models/%s/model.pth' %
config['name']))
model.eval()
val_transform = Compose([
transforms.Resize(config['input_h'], config['input_w']),
transforms.Normalize(),
])
val_dataset = SegmentationDataset(
img_ids=test_img_ids,
img_dir=os.path.join('inputs', config['dataset'], 'images'),
mask_dir=os.path.join('inputs', config['dataset'], 'masks'),
img_ext=config['img_ext'],
mask_ext=config['mask_ext'],
num_classes=config['num_classes'],
transform=val_transform)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers'],
drop_last=False)
avg_meter = AverageMeter()
dice_avg_meter = AverageMeter()
for c in range(config['num_classes']):
os.makedirs(os.path.join('outputs', config['name'], str(c)), exist_ok=True)
with torch.no_grad():
for input, target, meta in tqdm(val_loader, total=len(val_loader)):
input = input.cuda()
target = target.cuda()
# compute output
output = model(input)
iou = iou_score(output, target)
avg_meter.update(iou, input.size(0))
dice = dice_coef(output, target)
dice_avg_meter.update(dice, input.size(0))
output = torch.sigmoid(output).cpu().numpy()
for i in range(len(output)):
for c in range(config['num_classes']):
cv2.imwrite(os.path.join('outputs', config['name'], str(c), meta['img_id'][i] + '.jpg'),
(output[i, c] * 255).astype('uint8'))
print('IoU: %.4f' % avg_meter.avg)
fw.write('IoU: %.4f' % avg_meter.avg)
print('Dice: %.4f' % dice_avg_meter.avg)
fw.write('Dice: %.4f' % dice_avg_meter.avg)
torch.cuda.empty_cache()
def main():
'''params = {}
params['dataset'] = 'sa_dataset'
params['loss'] = 'BCEDiceLoss'
params['arch'] = 'NestedUNet'
params['num_classes'] = 2
params['input_channels'] = 3
params['deep_supervision'] = False
params['optimizer'] = 'SGD'
params['lr'] = 1e-3
params['weight_decay'] = 1e-4
params['momentum'] = 0.9
params['nesterov'] = False
params['scheduler'] = 'CosineAnnealingLR'
params['img_ext'] = 'png'
params['mask_ext'] = 'png'
params['input_h'] = 96 ## can be set to a command line argument in the future
params['input_w'] = 96 ## can be set to a command line argument in the future
params['batch_size'] = 16
params['num_workers'] = 4
params['epochs'] = 100
params['early_stopping'] = -1
params['min_lr'] = 1e-5
# extras
params['factor'] = 0.1
params['patience'] = 2
params['milestones'] = '1,2'
params['gamma'] = 0.66666
'''
#params = vars(parse_args())
id_groups = ['ids_group1', 'ids_group2', 'ids_group3', 'ids_group4', 'ids_group5']
for test_ids in id_groups:
training_groups = id_groups.copy()
training_groups.remove(test_ids)
for val_ids in training_groups:
train_ids = training_groups.copy()
train_ids.remove(val_ids)
modelName = 'shortAxis_val_' + val_ids + '_test_' + test_ids
trainFileName = 'shortAxis_val_' + val_ids + '_test_' + test_ids + '_trainingResult'
testFileName = 'shortAxis_val_' + val_ids + '_test_' + test_ids + '_testResult'
#main_func(train_ids, val_ids, modelName, trainFileName)
perform_validation(modelName, test_ids, testFileName)
exit()
if __name__ == '__main__':
main()