-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathflightAware.py
110 lines (96 loc) · 5.09 KB
/
flightAware.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from os import getenv
import requests
import pandas as pd
import polars as polars
from influxdb_client_3 import InfluxDBClient3
from datetime import datetime,timezone
import secret
import time
import os
db = "flightawaredata"
org="827f64a0472b70d8"
url= "https://us-east-1-1.aws.cloud2.influxdata.com/"
# this os.getenv is for the token and apikey, you should still use the secret.py file
token = os.getenv("TOKEN", default = secret.tokenflightaware)
apikey = os.getenv("APIKEY", default = secret.apikey)
#token and org are stored in secret.py - please create this file for yourself
influxdbClient = InfluxDBClient3(host=url, token=token, org=org)
apiUrl = "https://aeroapi.flightaware.com/aeroapi"
auth_header = {'x-apikey':apikey}
# these params are the bound box region, and limit us to two pages
# create your own http://bboxfinder.com/
# Las Vegas 36.011106 -115.446909 36.249025 -114.889010
# Denver 39.368093 -105.478063 40.186033 -104.258580
params = {
"query": '-latlong "36.011106 -115.446909 36.249025 -114.889010"',
'max_pages': 2
}
# it is easier to work with UTC in influxdb and grafana
def convert_to_utc(timestamp):
if timestamp is not None:
return str(datetime.now(timezone.utc))
else:
return "null"
flight_data=[]
while True:
try:
result = requests.get(apiUrl + "/flights/search", params=params, headers=auth_header)
result.raise_for_status() # Raise an exception for HTTP errors
if result.status_code == 200:
print(result.json()["flights"])
flight_data = []
for flight in result.json()["flights"]:
# smaller planes and private jets dont have to declare their destination, for a first run im removing these
if flight['destination'] is not None:
print(convert_to_utc(flight['last_position']['timestamp']))
flight_data.append({
"ident": flight['ident'],
"fa_flight_id": flight['fa_flight_id'],
"takeoff_time": convert_to_utc(flight['actual_off']),
"landing_time": convert_to_utc(flight['actual_on']),
"first_position_time": convert_to_utc(flight['first_position_time']),
# we are setting this one for the time value, which is required
"last_position": convert_to_utc(flight['last_position']['timestamp']),
"altitude": flight['last_position']['altitude'],
"altitude_change": flight['last_position']['altitude_change'],
"groundspeed": flight['last_position']['groundspeed'],
"latitude": flight['last_position']['latitude'],
"longitude": flight['last_position']['longitude'],
"aircraft_type": flight['aircraft_type']
})
#we want every value in the origin and destination - in the future im going to reduce this down to less codes and such
for key,value in flight['origin'].items():
flight_data.append({f"origin_{key}": value})
else:
flight_data.append({})
for key,value in flight['destination'].items():
flight_data.append({f"destination_{key}": value})
else:
flight_data.append({})
# this is the break up of the waypoints first and last. Its not impossible to store them all, I just dont know a good way yet.
waypoints = flight['waypoints']
waypoints = list(zip(waypoints[::2], waypoints[1::2]))
if waypoints:
first_waypoint = waypoints[0]
last_waypoint = waypoints[-1]
flight_data.append({"first_waypoint": {"Latitude": first_waypoint[0], "Longitude": first_waypoint[1]}})
flight_data.append({"last_waypoint": {"Latitude": last_waypoint[0], "Longitude": last_waypoint[1]}})
# this is for me to look at in the console later!
print(flight_data)
# Merge all dictionaries into one
merged_data = {}
for d in flight_data:
merged_data.update(d)
flight_df = pd.DataFrame([merged_data])
flight_df['timestamp'] = flight_df['last_position']
influxdbClient._write_api.write(bucket=db, record=flight_df, data_frame_measurement_name='flight', data_frame_tag_columns=['ident', 'fa_flight_id'], data_frame_timestamp_column='timestamp')
else:
# I dont save planes without a destination
print("small plane")
except requests.RequestException as e:
print(f"An error occurred: {e}")
except Exception as e:
print(f"An unexpected error occurred: {e}")
finally:
# Sleep for 5 minutes before making the next request
time.sleep(300)