forked from adventuresinML/adventures-in-ml-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcntk_tutorial.py
108 lines (85 loc) · 3.67 KB
/
cntk_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
os.environ['PATH'] = "C:\\Users\Andy\Anaconda2\envs\TensorFlow" + ';' + os.environ['PATH']
import cntk as C
from cntk.train import Trainer
from cntk.io import MinibatchSource, CTFDeserializer, StreamDef, StreamDefs
from cntk.learners import adadelta, learning_rate_schedule, UnitType
from cntk.ops import relu, element_times, constant
from cntk.layers import Dense, Sequential, For, default_options
from cntk.losses import cross_entropy_with_softmax
from cntk.metrics import classification_error
from cntk.train.training_session import *
from cntk.logging import ProgressPrinter
abs_path = os.path.dirname(os.path.abspath(__file__))
# Creates and trains a feedforward classification model for MNIST images
def simple_mnist():
input_dim = 784
num_output_classes = 10
num_hidden_layers = 2
hidden_layers_dim = 200
# Input variables denoting the features and label data
feature = C.input_variable(input_dim)
label = C.input_variable(num_output_classes)
# Instantiate the feedforward classification model
scaled_input = element_times(constant(0.00390625), feature)
# z = Sequential([
# Dense(hidden_layers_dim, activation=relu),
# Dense(hidden_layers_dim, activation=relu),
# Dense(num_output_classes)])(scaled_input)
with default_options(activation=relu, init=C.glorot_uniform()):
z = Sequential([For(range(num_hidden_layers),
lambda i: Dense(hidden_layers_dim)),
Dense(num_output_classes, activation=None)])(scaled_input)
ce = cross_entropy_with_softmax(z, label)
pe = classification_error(z, label)
# setup the data
path = abs_path + "\Train-28x28_cntk_text.txt"
reader_train = MinibatchSource(CTFDeserializer(path, StreamDefs(
features=StreamDef(field='features', shape=input_dim),
labels=StreamDef(field='labels', shape=num_output_classes))))
input_map = {
feature: reader_train.streams.features,
label: reader_train.streams.labels
}
# Training config
minibatch_size = 64
num_samples_per_sweep = 60000
num_sweeps_to_train_with = 10
# Instantiate progress writers.
progress_writers = [ProgressPrinter(
tag='Training',
num_epochs=num_sweeps_to_train_with)]
# Instantiate the trainer object to drive the model training
lr = learning_rate_schedule(1, UnitType.sample)
trainer = Trainer(z, (ce, pe), [adadelta(z.parameters, lr)], progress_writers)
training_session(
trainer=trainer,
mb_source=reader_train,
mb_size=minibatch_size,
model_inputs_to_streams=input_map,
max_samples=num_samples_per_sweep * num_sweeps_to_train_with,
progress_frequency=num_samples_per_sweep
).train()
# Load test data
path = abs_path + "\Test-28x28_cntk_text.txt"
reader_test = MinibatchSource(CTFDeserializer(path, StreamDefs(
features=StreamDef(field='features', shape=input_dim),
labels=StreamDef(field='labels', shape=num_output_classes))))
input_map = {
feature: reader_test.streams.features,
label: reader_test.streams.labels
}
# Test data for trained model
test_minibatch_size = 1024
num_samples = 10000
num_minibatches_to_test = num_samples / test_minibatch_size
test_result = 0.0
for i in range(0, int(num_minibatches_to_test)):
mb = reader_test.next_minibatch(test_minibatch_size, input_map=input_map)
eval_error = trainer.test_minibatch(mb)
test_result = test_result + eval_error
# Average of evaluation errors of all test minibatches
return test_result / num_minibatches_to_test
if __name__ == '__main__':
error = simple_mnist()
print("Error: %f" % error)