-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathddos_analyzer.py
47 lines (37 loc) · 1.33 KB
/
ddos_analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import sys
import logging
from scapy.all import *
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
def process_pcap(pcap_file):
packets = rdpcap(pcap_file)
data = []
for packet in packets:
try:
src_ip = packet[IP].src
dest_ip = packet[IP].dst
packet_size = len(packet)
timestamp = packet.time
data.append([src_ip, dest_ip, packet_size, timestamp])
except (IndexError, AttributeError) as e:
logging.error(f"Error processing packet: {e}")
continue
return data
def detect_ddos_attacks(data, eps=0.5, min_samples=5):
df_src_ip = [row[0] for row in data]
features = [[row[2], row[3]] for row in data]
features = StandardScaler().fit_transform(features)
db = DBSCAN(eps=eps, min_samples=min_samples).fit(features)
labels = db.labels_
src_ips = [df_src_ip[i] for i, label in enumerate(labels) if label != -1]
unique_src_ips = list(set(src_ips))
rules = [f"-s {ip} -j DROP" for ip in unique_src_ips]
return rules
if __name__ == '__main__':
pcap_file = sys.argv[1]
output_file = sys.argv[2]
data = process_pcap(pcap_file)
rules = detect_ddos_attacks(data)
with open(output_file, 'w') as f:
for rule in rules:
f.write(f"{rule}\n")