-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWeak_Bisim_Subst.thy
364 lines (297 loc) · 14.1 KB
/
Weak_Bisim_Subst.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
(*
Title: Psi-calculi
Based on the AFP entry by Jesper Bengtson ([email protected]), 2012
*)
theory Weak_Bisim_Subst
imports Weak_Bisim_Struct_Cong Weak_Bisim_Pres Bisim_Subst
begin
context env begin
abbreviation
weakBisimSubstJudge ("_ \<rhd> _ \<approx>\<^sub>s _" [70, 70, 70] 65) where "\<Psi> \<rhd> P \<approx>\<^sub>s Q \<equiv> (\<Psi>, P, Q) \<in> close_subst weakBisim"
abbreviation
weakBisimSubstNilJudge ("_ \<approx>\<^sub>s _" [70, 70] 65) where "P \<approx>\<^sub>s Q \<equiv> \<one> \<rhd> P \<approx>\<^sub>s Q"
lemmas weakBisimSubstClosed[eqvt] = close_subst_closed[OF weakBisimEqvt]
lemmas weakBisimEqvt[simp] = close_subst_eqvt[OF weakBisimEqvt]
lemma strongBisimSubstWeakBisimSubst:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "\<Psi> \<rhd> P \<sim>\<^sub>s Q"
shows "\<Psi> \<rhd> P \<approx>\<^sub>s Q"
using assms
by(metis close_substI close_substE strongBisimWeakBisim)
lemma weakBisimSubstOutputPres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and N :: 'a
assumes "\<Psi> \<rhd> P \<approx>\<^sub>s Q"
shows "\<Psi> \<rhd> M\<langle>N\<rangle>.P \<approx>\<^sub>s M\<langle>N\<rangle>.Q"
using assms
by(fastforce intro: close_substI close_substE weakBisimOutputPres)
lemma bisimSubstInputPres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and xvec :: "name list"
and N :: 'a
assumes "\<Psi> \<rhd> P \<approx>\<^sub>s Q"
and "xvec \<sharp>* \<Psi>"
and "distinct xvec"
shows "\<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.P \<approx>\<^sub>s M\<lparr>\<lambda>*xvec N\<rparr>.Q"
proof(rule_tac close_substI)
fix \<sigma> :: "(name list \<times> 'a list) list"
assume "well_formed_subst \<sigma>"
obtain p where "(p \<bullet> xvec) \<sharp>* \<sigma>"
and "(p \<bullet> xvec) \<sharp>* P" and "(p \<bullet> xvec) \<sharp>* Q" and "(p \<bullet> xvec) \<sharp>* \<Psi>" and "(p \<bullet> xvec) \<sharp>* N"
and S: "set p \<subseteq> set xvec \<times> set (p \<bullet> xvec)"
by(rule_tac c="(\<sigma>, P, Q, \<Psi>, N)" in name_list_avoiding) auto
from `\<Psi> \<rhd> P \<approx>\<^sub>s Q` have "(p \<bullet> \<Psi>) \<rhd> (p \<bullet> P) \<approx>\<^sub>s (p \<bullet> Q)"
by(rule weakBisimSubstClosed)
with `xvec \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>` S have "\<Psi> \<rhd> (p \<bullet> P) \<approx>\<^sub>s (p \<bullet> Q)"
by simp
{
fix Tvec' :: "'a list"
assume "length (p \<bullet> xvec) = length Tvec'"
with `well_formed_subst \<sigma>` `distinct xvec` have "well_formed_subst (\<sigma> @ [(p \<bullet> xvec,Tvec')])"
by simp
with `\<Psi> \<rhd> (p \<bullet> P) \<approx>\<^sub>s (p \<bullet> Q)` have "\<Psi> \<rhd> (p \<bullet> P)[<(\<sigma> @ [(p \<bullet> xvec,Tvec')])>] \<approx> (p \<bullet> Q)[<(\<sigma> @ [(p \<bullet> xvec,Tvec')])>]"
by (rule close_substE)
then have "\<Psi> \<rhd> ((p \<bullet> P)[<\<sigma>>])[(p \<bullet> xvec)::=Tvec'] \<approx> ((p \<bullet> Q)[<\<sigma>>])[(p \<bullet> xvec)::=Tvec']"
by (metis seq_subs_cons seq_subs_nil seq_subs_term_append)
}
then have "\<Psi> \<rhd> M[<\<sigma>>]\<lparr>\<lambda>*(p \<bullet> xvec) (p \<bullet> N)[<\<sigma>>]\<rparr>.((p \<bullet> P)[<\<sigma>>]) \<approx> M[<\<sigma>>]\<lparr>\<lambda>*(p \<bullet> xvec) (p \<bullet> N)[<\<sigma>>]\<rparr>.((p \<bullet> Q)[<\<sigma>>])"
using weakBisimInputPres by metis
with `(p \<bullet> xvec) \<sharp>* \<sigma>` have "\<Psi> \<rhd> (M\<lparr>\<lambda>*(p \<bullet> xvec) (p \<bullet> N)\<rparr>.(p \<bullet> P))[<\<sigma>>] \<approx> (M\<lparr>\<lambda>*(p \<bullet> xvec) (p \<bullet> N)\<rparr>.(p \<bullet> Q))[<\<sigma>>]"
by (metis seq_subst_input_chain seq_subst_simps(3))
moreover from `(p \<bullet> xvec) \<sharp>* N` `(p \<bullet> xvec) \<sharp>* P` S have "M\<lparr>\<lambda>*(p \<bullet> xvec) (p \<bullet> N)\<rparr>.(p \<bullet> P) = M\<lparr>\<lambda>*xvec N\<rparr>.P"
apply (simp add: psi.inject) by (rule input_chain_alpha[symmetric]) auto
moreover from `(p \<bullet> xvec) \<sharp>* N` `(p \<bullet> xvec) \<sharp>* Q` S have "M\<lparr>\<lambda>*(p \<bullet> xvec) (p \<bullet> N)\<rparr>.(p \<bullet> Q) = M\<lparr>\<lambda>*xvec N\<rparr>.Q"
apply (simp add: psi.inject) by (rule input_chain_alpha[symmetric]) auto
ultimately show "\<Psi> \<rhd> (M\<lparr>\<lambda>*xvec N\<rparr>.P)[<\<sigma>>] \<approx> (M\<lparr>\<lambda>*xvec N\<rparr>.Q)[<\<sigma>>]"
by force
qed
(*
lemma bisimSubstCasePresAux:
fixes \<Psi> :: 'b
and CsP :: "('c \<times> ('a, 'b, 'c) psi) list"
and CsQ :: "('c \<times> ('a, 'b, 'c) psi) list"
assumes C1: "\<And>\<phi> P. (\<phi>, P) mem CsP \<Longrightarrow> \<exists>Q. (\<phi>, Q) mem CsQ \<and> guarded Q \<and> \<Psi> \<rhd> P \<sim>\<^sub>s Q"
and C2: "\<And>\<phi> Q. (\<phi>, Q) mem CsQ \<Longrightarrow> \<exists>P. (\<phi>, P) mem CsP \<and> guarded P \<and> \<Psi> \<rhd> P \<sim>\<^sub>s Q"
shows "\<Psi> \<rhd> Cases CsP \<sim>\<^sub>s Cases CsQ"
proof -
{
fix xvec :: "name list"
and Tvec :: "'a list"
assume "length xvec = length Tvec"
and "distinct xvec"
have "\<Psi> \<rhd> Cases(caseListSubst CsP xvec Tvec) \<sim> Cases(caseListSubst CsQ xvec Tvec)"
proof(rule bisimCasePres)
fix \<phi> P
assume "(\<phi>, P) mem (caseListSubst CsP xvec Tvec)"
then obtain \<phi>' P' where "(\<phi>', P') mem CsP" and "\<phi> = substCond \<phi>' xvec Tvec" and PeqP': "P = (P'[xvec::=Tvec])"
by(induct CsP) force+
from `(\<phi>', P') mem CsP` obtain Q' where "(\<phi>', Q') mem CsQ" and "guarded Q'" and "\<Psi> \<rhd> P' \<sim>\<^sub>s Q'" by(blast dest: C1)
from `(\<phi>', Q') mem CsQ` `\<phi> = substCond \<phi>' xvec Tvec` obtain Q where "(\<phi>, Q) mem (caseListSubst CsQ xvec Tvec)" and "Q = Q'[xvec::=Tvec]"
by(induct CsQ) auto
with PeqP' `guarded Q'` `\<Psi> \<rhd> P' \<sim>\<^sub>s Q'` `length xvec = length Tvec` `distinct xvec` show "\<exists>Q. (\<phi>, Q) mem (caseListSubst CsQ xvec Tvec) \<and> guarded Q \<and> \<Psi> \<rhd> P \<sim> Q"
by(blast dest: bisimSubstE guardedSubst)
next
fix \<phi> Q
assume "(\<phi>, Q) mem (caseListSubst CsQ xvec Tvec)"
then obtain \<phi>' Q' where "(\<phi>', Q') mem CsQ" and "\<phi> = substCond \<phi>' xvec Tvec" and QeqQ': "Q = Q'[xvec::=Tvec]"
by(induct CsQ) force+
from `(\<phi>', Q') mem CsQ` obtain P' where "(\<phi>', P') mem CsP" and "guarded P'" and "\<Psi> \<rhd> P' \<sim>\<^sub>s Q'" by(blast dest: C2)
from `(\<phi>', P') mem CsP` `\<phi> = substCond \<phi>' xvec Tvec` obtain P where "(\<phi>, P) mem (caseListSubst CsP xvec Tvec)" and "P = P'[xvec::=Tvec]"
by(induct CsP) auto
with QeqQ' `guarded P'` `\<Psi> \<rhd> P' \<sim>\<^sub>s Q'` `length xvec = length Tvec` `distinct xvec` show "\<exists>P. (\<phi>, P) mem (caseListSubst CsP xvec Tvec) \<and> guarded P \<and> \<Psi> \<rhd> P \<sim> Q"
by(blast dest: bisimSubstE guardedSubst)
qed
}
thus ?thesis
by(rule_tac bisimSubstI) auto
qed
*)
lemma weakBisimSubstReflexive:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
shows "\<Psi> \<rhd> P \<approx>\<^sub>s P"
by(auto intro: close_substI weakBisimReflexive)
lemma bisimSubstTransitive:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assumes "\<Psi> \<rhd> P \<approx>\<^sub>s Q"
and "\<Psi> \<rhd> Q \<approx>\<^sub>s R"
shows "\<Psi> \<rhd> P \<approx>\<^sub>s R"
using assms
by(auto intro: close_substI close_substE weakBisimTransitive)
lemma weakBisimSubstSymmetric:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "\<Psi> \<rhd> P \<approx>\<^sub>s Q"
shows "\<Psi> \<rhd> Q \<approx>\<^sub>s P"
using assms
by(auto intro: close_substI close_substE weakBisimE)
(*
lemma bisimSubstCasePres:
fixes \<Psi> :: 'b
and CsP :: "('c \<times> ('a, 'b, 'c) psi) list"
and CsQ :: "('c \<times> ('a, 'b, 'c) psi) list"
assumes "length CsP = length CsQ"
and C: "\<And>(i::nat) \<phi> P \<phi>' Q. \<lbrakk>i <= length CsP; (\<phi>, P) = nth CsP i; (\<phi>', Q) = nth CsQ i\<rbrakk> \<Longrightarrow> \<phi> = \<phi>' \<and> \<Psi> \<rhd> P \<sim> Q"
shows "\<Psi> \<rhd> Cases CsP \<sim>\<^sub>s Cases CsQ"
proof -
{
fix \<phi>
and P
assume "(\<phi>, P) mem CsP"
with `length CsP = length CsQ` have "\<exists>Q. (\<phi>, Q) mem CsQ \<and> \<Psi> \<rhd> P \<sim>\<^sub>s Q"
apply(induct n=="length CsP" arbitrary: CsP CsQ rule: nat.induct)
apply simp
apply simp
apply auto
}
using `length CsP = length CsQ`
proof(induct n=="length CsP" rule: nat.induct)
case zero
thus ?case by(fastforce intro: bisimSubstReflexive)
next
case(Suc n)
next
apply auto
apply(blast intro: bisimSubstReflexive)
apply auto
apply(simp add: nth.simps)
apply(auto simp add: nth.simps)
apply blast
apply(rule_tac bisimSubstCasePresAux)
apply auto
*)
lemma weakBisimSubstParPres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assumes "\<Psi> \<rhd> P \<approx>\<^sub>s Q"
shows "\<Psi> \<rhd> P \<parallel> R \<approx>\<^sub>s Q \<parallel> R"
using assms
by(fastforce intro: close_substI close_substE weakBisimParPres)
lemma weakBisimSubstResPres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and x :: name
assumes "\<Psi> \<rhd> P \<approx>\<^sub>s Q"
and "x \<sharp> \<Psi>"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<approx>\<^sub>s \<lparr>\<nu>x\<rparr>Q"
proof(rule close_substI)
fix \<sigma> :: "(name list \<times> 'a list) list"
assume "well_formed_subst \<sigma>"
obtain y::name where "y \<sharp> \<Psi>" and "y \<sharp> P" and "y \<sharp> Q" and "y \<sharp> \<sigma>"
by (generate_fresh "name") auto
from `\<Psi> \<rhd> P \<approx>\<^sub>s Q` have "([(x, y)] \<bullet> \<Psi>) \<rhd> ([(x, y)] \<bullet> P) \<approx>\<^sub>s ([(x, y)] \<bullet> Q)"
by (rule weakBisimSubstClosed)
with `x \<sharp> \<Psi>` `y \<sharp> \<Psi>` have "\<Psi> \<rhd> ([(x, y)] \<bullet> P) \<approx>\<^sub>s ([(x, y)] \<bullet> Q)"
by simp
hence "\<Psi> \<rhd> ([(x, y)] \<bullet> P)[<\<sigma>>] \<approx> ([(x, y)] \<bullet> Q)[<\<sigma>>]"
using `well_formed_subst \<sigma>` by (rule close_substE)
hence "\<Psi> \<rhd> \<lparr>\<nu>y\<rparr>(([(x, y)] \<bullet> P)[<\<sigma>>]) \<approx> \<lparr>\<nu>y\<rparr>(([(x, y)] \<bullet> Q)[<\<sigma>>])"
using `y \<sharp> \<Psi>` by (rule weakBisimResPres)
with `y \<sharp> P` `y \<sharp> Q` `y \<sharp> \<sigma>` show "\<Psi> \<rhd> (\<lparr>\<nu>x\<rparr>P)[<\<sigma>>] \<approx> (\<lparr>\<nu>x\<rparr>Q)[<\<sigma>>]"
by (simp add: alpha_res)
qed
(*
lemma bisimSubstBangPres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "\<Psi> \<rhd> P \<sim>\<^sub>s Q"
and "guarded P"
and "guarded Q"
shows "\<Psi> \<rhd> !P \<sim>\<^sub>s !Q"
using assms
by(fastforce intro: bisimSubstI bisimSubstE bisimBangPres)
*)
lemma weakBisimSubstParNil:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
shows "\<Psi> \<rhd> P \<parallel> \<zero> \<approx>\<^sub>s P"
by(metis strongBisimSubstWeakBisimSubst bisim_subst_par_nil)
lemma weakBisimSubstParComm:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
shows "\<Psi> \<rhd> P \<parallel> Q \<approx>\<^sub>s Q \<parallel> P"
by(metis strongBisimSubstWeakBisimSubst bisim_subst_par_comm)
lemma weakBisimSubstParAssoc:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
shows "\<Psi> \<rhd> (P \<parallel> Q) \<parallel> R \<approx>\<^sub>s P \<parallel> (Q \<parallel> R)"
by(metis strongBisimSubstWeakBisimSubst bisim_subst_par_assoc)
lemma weakBisimSubstResNil:
fixes \<Psi> :: 'b
and x :: name
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>\<zero> \<sim>\<^sub>s \<zero>"
by(metis strongBisimSubstWeakBisimSubst bisim_subst_res_nil)
lemma weakBisimSubstScopeExt:
fixes \<Psi> :: 'b
and x :: name
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "x \<sharp> P"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(P \<parallel> Q) \<approx>\<^sub>s P \<parallel> \<lparr>\<nu>x\<rparr>Q"
using assms
by(metis strongBisimSubstWeakBisimSubst bisim_subst_scope_ext)
lemma weakBisimSubstCasePushRes:
fixes x :: name
and \<Psi> :: 'b
and Cs :: "('c \<times> ('a, 'b, 'c) psi) list"
assumes "x \<sharp> map fst Cs"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(Cases Cs) \<approx>\<^sub>s Cases map (\<lambda>(\<phi>, P). (\<phi>, \<lparr>\<nu>x\<rparr>P)) Cs"
using assms
by(metis strongBisimSubstWeakBisimSubst bisim_subst_case_push_res)
lemma weakBisimSubstOutputPushRes:
fixes x :: name
and \<Psi> :: 'b
and M :: 'a
and N :: 'a
and P :: "('a, 'b, 'c) psi"
assumes "x \<sharp> \<Psi>"
and "x \<sharp> M"
and "x \<sharp> N"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P) \<approx>\<^sub>s M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P"
using assms
by(metis strongBisimSubstWeakBisimSubst bisim_subst_output_push_res)
lemma weakBisimSubstInputPushRes:
fixes x :: name
and \<Psi> :: 'b
and M :: 'a
and xvec :: "name list"
and N :: 'a
assumes "x \<sharp> M"
and "x \<sharp> xvec"
and "x \<sharp> N"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<lparr>\<lambda>*xvec N\<rparr>.P) \<approx>\<^sub>s M\<lparr>\<lambda>*xvec N\<rparr>.\<lparr>\<nu>x\<rparr>P"
using assms
by(metis strongBisimSubstWeakBisimSubst bisim_subst_input_push_res)
lemma weakBisimSubstResComm:
fixes x :: name
and y :: name
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(\<lparr>\<nu>y\<rparr>P) \<approx>\<^sub>s \<lparr>\<nu>y\<rparr>(\<lparr>\<nu>x\<rparr>P)"
by(metis strongBisimSubstWeakBisimSubst bisim_subst_res_comm)
lemma weakBisimSubstExtBang:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
assumes "guarded P"
shows "\<Psi> \<rhd> !P \<approx>\<^sub>s P \<parallel> !P"
using assms
by(metis strongBisimSubstWeakBisimSubst bisim_subst_ext_bang)
end
end