-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChain.thy
1235 lines (1020 loc) · 39.2 KB
/
Chain.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
theory Chain
imports "HOL-Nominal.Nominal"
begin
lemma pt_set_nil:
fixes Xs :: "'a set"
assumes pt: "pt TYPE('a) TYPE ('x)"
and at: "at TYPE('x)"
shows "([]::'x prm)\<bullet>Xs = Xs"
by(auto simp add: perm_set_def pt1[OF pt])
lemma pt_set_append:
fixes pi1 :: "'x prm"
and pi2 :: "'x prm"
and Xs :: "'a set"
assumes pt: "pt TYPE('a) TYPE ('x)"
and at: "at TYPE('x)"
shows "(pi1@pi2)\<bullet>Xs = pi1\<bullet>(pi2\<bullet>Xs)"
by(auto simp add: perm_set_def pt2[OF pt])
lemma pt_set_prm_eq:
fixes pi1 :: "'x prm"
and pi2 :: "'x prm"
and Xs :: "'a set"
assumes pt: "pt TYPE('a) TYPE ('x)"
and at: "at TYPE('x)"
shows "pi1 \<triangleq> pi2 \<Longrightarrow> pi1\<bullet>Xs = pi2\<bullet>Xs"
by(auto simp add: perm_set_def pt3[OF pt])
lemma pt_set_inst:
assumes pt: "pt TYPE('a) TYPE ('x)"
and at: "at TYPE('x)"
shows "pt TYPE('a set) TYPE('x)"
thm pt_def
apply(simp add: pt_def pt_set_nil[OF pt, OF at] pt_set_append[OF pt, OF at])
apply(clarify)
by(rule pt_set_prm_eq[OF pt, OF at])
lemma pt_ball_eqvt:
fixes pi :: "'a prm"
and Xs :: "'b set"
and P :: "'b \<Rightarrow> bool"
assumes pt: "pt TYPE('b) TYPE('a)"
and at: "at TYPE('a)"
shows "(pi \<bullet> (\<forall>x \<in> Xs. P x)) = (\<forall>x \<in> (pi \<bullet> Xs). pi \<bullet> P (rev pi \<bullet> x))"
apply(auto simp add: perm_bool)
apply(drule_tac pi="rev pi" in pt_set_bij2[OF pt, OF at])
apply(simp add: pt_rev_pi[OF pt_set_inst[OF pt, OF at], OF at])
apply(drule_tac pi="pi" in pt_set_bij2[OF pt, OF at])
apply(erule_tac x="pi \<bullet> x" in ballE)
apply(simp add: pt_rev_pi[OF pt, OF at])
by simp
lemma perm_cart_prod:
fixes Xs :: "'b set"
and Ys :: "'c set"
and p :: "'a prm"
assumes pt1: "pt TYPE('b) TYPE('a)"
and pt2: "pt TYPE('c) TYPE('a)"
and at: "at TYPE('a)"
shows "(p \<bullet> (Xs \<times> Ys)) = (((p \<bullet> Xs) \<times> (p \<bullet> Ys))::(('b \<times> 'c) set))"
by(auto simp add: perm_set_def)
lemma supp_member:
fixes Xs :: "'b set"
and x :: 'a
assumes pt: "pt TYPE('b) TYPE('a)"
and at: "at TYPE('a)"
and fs: "fs TYPE('b) TYPE('a)"
and "finite Xs"
and "x \<in> ((supp Xs)::'a set)"
obtains X where "(X::'b) \<in> Xs" and "x \<in> supp X"
proof -
from `finite Xs` `x \<in> supp Xs` have "\<exists>X::'b. (X \<in> Xs) \<and> (x \<in> (supp X))"
proof(induct rule: finite_induct)
case empty
from `x \<in> ((supp {})::'a set)` have False
by(simp add: supp_set_empty)
thus ?case by simp
next
case(insert y Xs)
show ?case
proof(case_tac "x \<in> supp y")
assume "x \<in> supp y"
thus ?case by force
next
assume "x \<notin> supp y"
with `x \<in> supp(insert y Xs)` have "x \<in> supp Xs"
by(simp add: supp_fin_insert[OF pt, OF at, OF fs, OF `finite Xs`])
with `x \<in> supp Xs \<Longrightarrow> \<exists>X. X \<in> Xs \<and> x \<in> supp X`
show ?case by force
qed
qed
with `\<And>X. \<lbrakk>X \<in> Xs; x \<in> supp X\<rbrakk> \<Longrightarrow> thesis`
show ?thesis by blast
qed
lemma supp_cart_prod_empty[simp]:
fixes Xs :: "'b set"
shows "supp (Xs \<times> {}) = ({}::'a set)"
and "supp ({} \<times> Xs) = ({}::'a set)"
by(auto simp add: supp_set_empty)
lemma supp_cart_prod:
fixes Xs :: "'b set"
and Ys :: "'c set"
assumes pt1: "pt TYPE('b) TYPE('a)"
and pt2: "pt TYPE('c) TYPE('a)"
and fs1: "fs TYPE('b) TYPE('a)"
and fs2: "fs TYPE('c) TYPE('a)"
and at: "at TYPE('a)"
and f1: "finite Xs"
and f2: "finite Ys"
and a: "Xs \<noteq> {}"
and b: "Ys \<noteq> {}"
shows "((supp (Xs \<times> Ys))::'a set) = ((supp Xs) \<union> (supp Ys))"
proof -
from f1 f2 have f3: "finite(Xs \<times> Ys)" by simp
show ?thesis
apply(simp add: supp_of_fin_sets[OF pt_prod_inst[OF pt1, OF pt2], OF at, OF fs_prod_inst[OF fs1, OF fs2], OF f3] supp_prod)
apply(rule equalityI)
using Union_included_in_supp[OF pt1, OF at, OF fs1, OF f1] Union_included_in_supp[OF pt2, OF at, OF fs2, OF f2]
apply(force simp add: supp_prod)
using a b
apply(auto simp add: supp_prod)
using supp_member[OF pt1, OF at, OF fs1, OF f1]
apply blast
using supp_member[OF pt2, OF at, OF fs2, OF f2]
by blast
qed
lemma fresh_cart_prod:
fixes x :: 'a
and Xs :: "'b set"
and Ys :: "'c set"
assumes pt1: "pt TYPE('b) TYPE('a)"
and pt2: "pt TYPE('c) TYPE('a)"
and fs1: "fs TYPE('b) TYPE('a)"
and fs2: "fs TYPE('c) TYPE('a)"
and at: "at TYPE('a)"
and f1: "finite Xs"
and f2: "finite Ys"
and a: "Xs \<noteq> {}"
and b: "Ys \<noteq> {}"
shows "(x \<sharp> (Xs \<times> Ys)) = (x \<sharp> Xs \<and> x \<sharp> Ys)"
using assms
by(simp add: supp_cart_prod fresh_def)
lemma fresh_star_cart_prod:
fixes Zs :: "'a set"
and xvec :: "'a list"
and Xs :: "'b set"
and Ys :: "'c set"
assumes pt1: "pt TYPE('b) TYPE('a)"
and pt2: "pt TYPE('c) TYPE('a)"
and fs1: "fs TYPE('b) TYPE('a)"
and fs2: "fs TYPE('c) TYPE('a)"
and at: "at TYPE('a)"
and f1: "finite Xs"
and f2: "finite Ys"
and a: "Xs \<noteq> {}"
and b: "Ys \<noteq> {}"
shows "(Zs \<sharp>* (Xs \<times> Ys)) = (Zs \<sharp>* Xs \<and> Zs \<sharp>* Ys)"
and "(xvec \<sharp>* (Xs \<times> Ys)) = (xvec \<sharp>* Xs \<and> xvec \<sharp>* Ys)"
using assms
by(force simp add: fresh_cart_prod fresh_star_def)+
lemma perm_commute:
fixes p :: "'a prm"
and q :: "'a prm"
and P :: 'x
and Xs :: "'a set"
and Ys :: "'a set"
assumes pt: "pt TYPE('x) TYPE('a)"
and at: "at TYPE('a)"
and a: "(set p) \<subseteq> Xs \<times> Ys"
and b: "Xs \<sharp>* q"
and c: "Ys \<sharp>* q"
shows "p \<bullet> q \<bullet> P = q \<bullet> p \<bullet> P"
proof -
have "p \<bullet> q \<bullet> P = (p \<bullet> q) \<bullet> p \<bullet> P"
by(rule pt_perm_compose[OF pt, OF at])
moreover from at have "pt TYPE('a) TYPE('a)"
by(rule at_pt_inst)
hence "pt TYPE(('a \<times> 'a) list) TYPE('a)"
by(force intro: pt_prod_inst pt_list_inst)
hence "p \<bullet> q = q" using at a b c
by(rule pt_freshs_freshs)
ultimately show ?thesis by simp
qed
definition
distinct_perm :: "'a prm \<Rightarrow> bool"
where
"distinct_perm p \<equiv> distinct((map fst p)@(map snd p))"
lemma at_set_avoiding_aux':
fixes Xs::"'a set"
and As::"'a set"
assumes at: "at TYPE('a)"
and a: "finite Xs"
and b: "Xs \<subseteq> As"
and c: "finite As"
and d: "finite ((supp c)::'a set)"
shows "\<exists>(Ys::'a set) (pi::'a prm). Ys\<sharp>*c \<and> Ys \<inter> As = {} \<and> (pi\<bullet>Xs=Ys) \<and>
set pi \<subseteq> Xs \<times> Ys \<and> finite Ys \<and> (distinct_perm pi)"
using a b c
proof (induct)
case empty
have "({}::'a set)\<sharp>*c" by (simp add: fresh_star_def)
moreover
have "({}::'a set) \<inter> As = {}" by simp
moreover
have "([]::'a prm)\<bullet>{} = ({}::'a set)"
by(rule_tac pt1[OF pt_set_inst, OF at_pt_inst, OF at, OF at])
moreover
have "set ([]::'a prm) \<subseteq> {} \<times> {}" by simp
moreover
have "finite ({}::'a set)" by simp
moreover have "distinct_perm([]::'a prm)"
by(simp add: distinct_perm_def)
ultimately show ?case by blast
next
case (insert x Xs)
then have ih: "\<exists>Ys pi. Ys\<sharp>*c \<and> Ys \<inter> As = {} \<and> pi\<bullet>Xs = Ys \<and> set pi \<subseteq> Xs \<times> Ys \<and> finite Ys \<and> distinct_perm pi" by simp
then obtain Ys pi where a1: "Ys\<sharp>*c" and a2: "Ys \<inter> As = {}" and a3: "(pi::'a prm)\<bullet>Xs = Ys" and
a4: "set pi \<subseteq> Xs \<times> Ys" and a5: "finite Ys"
and a6: "distinct_perm pi" by blast
have b: "x\<notin>Xs" by fact
have d1: "finite As" by fact
have d2: "finite Xs" by fact
have d3: "insert x Xs \<subseteq> As" by fact
have d4: "finite((supp pi)::'a set)"
by(induct pi)
(auto simp add: supp_list_nil supp_prod at_fin_set_supp[OF at]
supp_list_cons at_supp[OF at])
have "\<exists>y::'a. y\<sharp>(c,x,Ys,As,pi)" using d d1 a5 d4
by (rule_tac at_exists_fresh'[OF at])
(simp add: supp_prod at_supp[OF at] at_fin_set_supp[OF at])
then obtain y::"'a" where e: "y\<sharp>(c,x,Ys,As,pi)" by blast
have "({y}\<union>Ys)\<sharp>*c" using a1 e by (simp add: fresh_star_def)
moreover
have "({y}\<union>Ys)\<inter>As = {}" using a2 d1 e by (simp add: fresh_prod at_fin_set_fresh[OF at])
moreover
have "(((pi\<bullet>x,y)#pi)\<bullet>(insert x Xs)) = {y}\<union>Ys"
proof -
have eq: "[(pi\<bullet>x,y)]\<bullet>Ys = Ys"
proof -
have "(pi\<bullet>x)\<sharp>Ys" using a3[symmetric] b d2
by(simp add: pt_fresh_bij[OF pt_set_inst, OF at_pt_inst, OF at, OF at, OF at]
at_fin_set_fresh[OF at])
moreover
have "y\<sharp>Ys" using e by simp
ultimately show "[(pi\<bullet>x,y)]\<bullet>Ys = Ys"
by (simp add: pt_fresh_fresh[OF pt_set_inst, OF at_pt_inst[OF at], OF at, OF at])
qed
have "(((pi\<bullet>x,y)#pi)\<bullet>({x}\<union>Xs)) = ([(pi\<bullet>x,y)]\<bullet>(pi\<bullet>({x}\<union>Xs)))"
by (simp add: pt2[symmetric, OF pt_set_inst, OF at_pt_inst[OF at], OF at])
also have "\<dots> = {y}\<union>([(pi\<bullet>x,y)]\<bullet>(pi\<bullet>Xs))"
by(simp only: union_eqvt perm_set_def at_calc[OF at]) auto
also have "\<dots> = {y}\<union>([(pi\<bullet>x,y)]\<bullet>Ys)" using a3 by simp
also have "\<dots> = {y}\<union>Ys" using eq by simp
finally show "(((pi\<bullet>x,y)#pi)\<bullet>(insert x Xs)) = {y}\<union>Ys" by auto
qed
moreover
have "pi\<bullet>x=x" using a4 b a2 a3 d3 by (rule_tac at_prm_fresh2[OF at]) (auto)
then have "set ((pi\<bullet>x,y)#pi) \<subseteq> (insert x Xs) \<times> ({y}\<union>Ys)" using a4 by auto
moreover
have "finite ({y}\<union>Ys)" using a5 by simp
moreover from `Ys \<inter> As = {}` `(insert x Xs) \<subseteq> As` `finite Ys` have "x \<notin> Ys"
by(auto simp add: fresh_def at_fin_set_supp[OF at])
with a6 `pi \<bullet> x = x` `x \<notin> Xs` `(set pi) \<subseteq> Xs \<times> Ys` e have "distinct_perm((pi \<bullet> x, y)#pi)"
apply(auto simp add: distinct_perm_def fresh_prod at_fresh[OF at])
proof -
fix a b
assume "b \<sharp> pi" and "(a, b) \<in> set pi"
thus False
by(induct pi)
(auto simp add: supp_list_cons supp_prod at_supp[OF at] fresh_list_cons fresh_prod at_fresh[OF at])
next
fix a b
assume "a \<sharp> pi" and "(a, b) \<in> set pi"
thus False
by(induct pi)
(auto simp add: supp_list_cons supp_prod at_supp[OF at] fresh_list_cons fresh_prod at_fresh[OF at])
qed
ultimately
show ?case by blast
qed
lemma at_set_avoiding:
fixes Xs::"'a set"
assumes at: "at TYPE('a)"
and a: "finite Xs"
and b: "finite ((supp c)::'a set)"
obtains pi::"'a prm" where "(pi \<bullet> Xs) \<sharp>* c" and "set pi \<subseteq> Xs \<times> (pi \<bullet> Xs)" and "distinct_perm pi"
using a b
by (frule_tac As="Xs" in at_set_avoiding_aux'[OF at]) auto
lemma pt_swap:
fixes x :: 'a
and a :: 'x
and b :: 'x
assumes pt: "pt TYPE('a) TYPE('x)"
and at: "at TYPE('x)"
shows "[(a, b)] \<bullet> x = [(b, a)] \<bullet> x"
proof -
show ?thesis by(simp add: pt3[OF pt] at_ds5[OF at])
qed
atom_decl name
lemma supp_subset:
fixes Xs :: "'a::fs_name set"
and Ys :: "'a::fs_name set"
assumes "Xs \<subseteq> Ys"
and "finite Xs"
and "finite Ys"
shows "(supp Xs) \<subseteq> ((supp Ys)::name set)"
proof(rule subsetI)
fix x
assume "x \<in> ((supp Xs)::name set)"
with `finite Xs` obtain X where "X \<in> Xs" and "x \<in> supp X"
by(rule supp_member[OF pt_name_inst, OF at_name_inst, OF fs_name_inst])
from `X \<in> Xs` `Xs \<subseteq> Ys` have "X \<in> Ys" by auto
with `finite Ys` `x \<in> supp X` show "x \<in> supp Ys"
by(induct rule: finite_induct)
(auto simp add: supp_fin_insert[OF pt_name_inst, OF at_name_inst, OF fs_name_inst])
qed
fun mem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infixr "mem" 75)
where "p mem l = (p \<in> set l)"
lemma mem_fresh:
fixes x :: name
and p :: "'a::fs_name"
and l :: "'a::fs_name list"
assumes "x \<sharp> l"
and "p mem l"
shows "x \<sharp> p"
using assms
by(induct l, auto simp add: fresh_list_cons)
lemma mem_fresh_chain:
fixes xvec :: "name list"
and p :: "'a::fs_name"
and l :: "'a::fs_name list"
and Xs :: "name set"
assumes "p mem l"
shows "xvec \<sharp>* l \<Longrightarrow> xvec \<sharp>* p"
and "Xs \<sharp>* l \<Longrightarrow> Xs \<sharp>* p"
using assms
by(auto simp add: fresh_star_def intro: mem_fresh)
lemma fresh_star_list_append[simp]:
fixes A :: "name list"
and B :: "name list"
and C :: "name list"
shows "(A \<sharp>* (B @ C)) = ((A \<sharp>* B) \<and> (A \<sharp>* C))"
by(auto simp add: fresh_star_def fresh_list_append)
lemma union_simps[simp]:
fixes Xs :: "name set"
and Ys :: "name set"
and C :: "'a::fs_name"
shows "((Xs \<union> Ys) \<sharp>* C) = ((Xs \<sharp>* C) \<and> (Ys \<sharp>* C))"
by(auto simp add: fresh_star_def)
lemma subst_fresh_aux[simp]:
fixes C :: "'a::fs_name"
and xvec :: "name list"
shows "xvec \<sharp>* (supp C - set xvec)"
by(auto simp add: fresh_star_def fresh_def at_fin_set_supp[OF at_name_inst] fs_name1)
lemma fresh_star_perm_app[simp]:
fixes Xs :: "name set"
and xvec :: "name list"
and p :: "name prm"
and C :: "'d::fs_name"
shows "\<lbrakk>Xs \<sharp>* p; Xs \<sharp>* C\<rbrakk> \<Longrightarrow> Xs \<sharp>* (p \<bullet> C)"
and "\<lbrakk>xvec \<sharp>* p; xvec \<sharp>* C\<rbrakk> \<Longrightarrow> xvec \<sharp>* (p \<bullet> C)"
by(auto simp add: fresh_star_def fresh_perm_app)
lemma fresh_sets[simp]:
fixes x :: name
and y :: name
and xvec :: "name list"
and X :: "name set"
and C :: 'a
shows "([]::name list) \<sharp>* C"
and "([]::name list) \<sharp>* [y].C"
and "({}::name set) \<sharp>* C"
and "({}::name set) \<sharp>* [y].C"
and "((x#xvec) \<sharp>* C) = (x \<sharp> C \<and> xvec \<sharp>* C)"
and "((x#xvec) \<sharp>* ([y].C)) = (x \<sharp> ([y].C) \<and> xvec \<sharp>* ([y].C))"
and "((insert x X) \<sharp>* C) = (x \<sharp> C \<and> X \<sharp>* C)"
and "((insert x X) \<sharp>* ([y].C)) = (x \<sharp> ([y].C) \<and> X \<sharp>* ([y].C))"
by(auto simp add: fresh_star_def)
lemma fresh_star_atom[simp]: "(xvec::name list) \<sharp>* (x::name) = x \<sharp> xvec"
by(induct xvec)
(auto simp add: fresh_list_nil fresh_list_cons fresh_atm)
lemma name_list_set_fresh[simp]:
fixes xvec :: "name list"
and x :: "'a::fs_name"
shows "(set xvec) \<sharp>* x = xvec \<sharp>* x"
by(auto simp add: fresh_star_def)
lemma name_list_supp:
fixes xvec :: "name list"
shows "set xvec = supp xvec"
proof -
have "set xvec = supp(set xvec)"
by(simp add: at_fin_set_supp[OF at_name_inst])
moreover have "\<dots> = supp xvec"
by(simp add: pt_list_set_supp[OF pt_name_inst, OF at_name_inst, OF fs_name_inst])
ultimately show ?thesis
by simp
qed
lemma abs_fresh_list_star:
fixes xvec :: "name list"
and a :: name
and P :: "'a::fs_name"
shows "(xvec \<sharp>* [a].P) = ((set xvec) - {a}) \<sharp>* P"
by(induct xvec) (auto simp add: fresh_star_def abs_fresh)
lemma abs_fresh_set_star:
fixes X :: "name set"
and a :: name
and P :: "'a::fs_name"
shows "(X \<sharp>* [a].P) = (X - {a}) \<sharp>* P"
by(auto simp add: fresh_star_def abs_fresh)
lemmas abs_fresh_star = abs_fresh_list_star abs_fresh_set_star
lemma abs_fresh_list_star'[simp]:
fixes xvec :: "name list"
and a :: name
and P :: "'a::fs_name"
assumes "a \<sharp> xvec"
shows "xvec \<sharp>* [a].P = xvec \<sharp>* P"
using assms
by(induct xvec) (auto simp add: abs_fresh fresh_list_cons fresh_atm)
lemma fresh_chain_sym[simp]:
fixes xvec :: "name list"
and yvec :: "name list"
shows "xvec \<sharp>* yvec = yvec \<sharp>* xvec"
by(auto simp add: fresh_star_def fresh_def name_list_supp)
lemmas [eqvt] = perm_cart_prod[OF pt_name_inst, OF pt_name_inst, OF at_name_inst]
lemma name_set_avoiding:
fixes c :: "'a::fs_name"
and X :: "name set"
assumes "finite X"
and "\<And>pi::name prm. \<lbrakk>(pi \<bullet> X) \<sharp>* c; distinct_perm pi; set pi \<subseteq> X \<times> (pi \<bullet> X)\<rbrakk> \<Longrightarrow> thesis"
shows thesis
using assms
by(rule_tac c=c in at_set_avoiding[OF at_name_inst]) (simp_all add: fs_name1)
lemmas simps[simp] = fresh_atm fresh_prod
pt3[OF pt_name_inst, OF at_ds1, OF at_name_inst]
pt_fresh_fresh[OF pt_name_inst, OF at_name_inst]
pt_rev_pi[OF pt_name_inst, OF at_name_inst]
pt_pi_rev[OF pt_name_inst, OF at_name_inst]
lemmas name_supp_cart_prod = supp_cart_prod[OF pt_name_inst, OF pt_name_inst, OF fs_name_inst, OF fs_name_inst, OF at_name_inst]
lemmas name_fresh_cart_prod = fresh_cart_prod[OF pt_name_inst, OF pt_name_inst, OF fs_name_inst, OF fs_name_inst, OF at_name_inst]
lemmas name_fresh_star_cart_prod = fresh_star_cart_prod[OF pt_name_inst, OF pt_name_inst, OF fs_name_inst, OF fs_name_inst, OF at_name_inst]
lemmas name_swap_bij[simp] = pt_swap_bij[OF pt_name_inst, OF at_name_inst]
lemmas name_swap = pt_swap[OF pt_name_inst, OF at_name_inst]
lemmas name_set_fresh_fresh[simp] = pt_freshs_freshs[OF pt_name_inst, OF at_name_inst]
lemmas list_fresh[simp] = fresh_list_nil fresh_list_cons fresh_list_append
definition eqvt :: "'a::fs_name set \<Rightarrow> bool"
where
"eqvt X \<equiv> \<forall>x \<in> X. \<forall>p::name prm. p \<bullet> x \<in> X"
lemma eqvt_union[intro]:
fixes Rel :: "('d::fs_name) set"
and Rel' :: "'d set"
assumes Eqvt_rel: "eqvt Rel"
and Eqvt_rel': "eqvt Rel'"
shows "eqvt (Rel \<union> Rel')"
proof -
from assms show ?thesis
by(force simp add: eqvt_def)
qed
lemma eqvt_perm[simp]:
fixes X :: "('d::fs_name) set"
and x :: name
and y :: name
assumes "eqvt X"
shows "([(x, y)] \<bullet> X) = X"
using assms
apply(auto simp add: eqvt_def)
apply(erule_tac x="[(x, y)] \<bullet> xa" in ballE)
apply(erule_tac x="[(x, y)]" in allE)
apply simp
apply(drule_tac pi="[(x, y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply simp
apply(erule_tac x=xa in ballE)
apply(erule_tac x="[(x, y)]" in allE)
apply(drule_tac pi="[(x, y)]" and x="[(x, y)] \<bullet> xa" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply simp
by simp
lemma eqvtI:
fixes X :: "'d::fs_name set"
and x :: 'd
and p :: "name prm"
assumes "eqvt X"
and "x \<in> X"
shows "(p \<bullet> x) \<in> X"
using assms
by(unfold eqvt_def) auto
lemma fresh_star_list_nil[simp]:
fixes xvec :: "name list"
and Xs :: "name set"
shows "xvec \<sharp>* []"
and "Xs \<sharp>* []"
by(auto simp add: fresh_star_def)
lemma fresh_star_list_cons[simp]:
fixes xvec :: "name list"
and Xs :: "name set"
and x :: "'a::fs_name"
and xs :: "'a list"
shows "(xvec \<sharp>* (x#xs)) = ((xvec \<sharp>* x) \<and> xvec \<sharp>* xs)"
and "(Xs \<sharp>* (x#xs)) = ((Xs \<sharp>* x) \<and> (Xs \<sharp>* xs))"
by(auto simp add: fresh_star_def)
lemma fresh_star_pair[simp]:
fixes X :: "name set"
and xvec :: "name list"
and x :: "'a::fs_name"
and y :: "'b::fs_name"
shows "(X \<sharp>* (x, y)) = (X \<sharp>* x \<and> X \<sharp>* y)"
and "(xvec \<sharp>* (x, y)) = (xvec \<sharp>* x \<and> xvec \<sharp>* y)"
by(auto simp add: fresh_star_def)
lemma name_list_avoiding:
fixes c :: "'a::fs_name"
and xvec :: "name list"
assumes "\<And>pi::name prm. \<lbrakk>(pi \<bullet> xvec) \<sharp>* c; distinct_perm pi; set pi \<subseteq> (set xvec) \<times> (set (pi \<bullet> xvec))\<rbrakk> \<Longrightarrow> thesis"
shows thesis
proof -
have "finite(set xvec)" by simp
thus ?thesis using assms
by(rule name_set_avoiding) (auto simp add: eqvts fresh_star_def)
qed
lemma distinct_perm_simps[simp]:
fixes p :: "name prm"
and a :: name
and b :: name
shows "distinct_perm([]::name prm)"
and "(distinct_perm((a, b)#p)) = (distinct_perm p \<and> a \<noteq> b \<and> a \<sharp> p \<and> b \<sharp> p)"
apply(simp add: distinct_perm_def)
apply(induct p)
apply(unfold distinct_perm_def)
apply(clarsimp)
apply(rule iffI, erule iffE)
by(clarsimp)+
lemma map_eqvt[eqvt]:
fixes p :: "name prm"
and lst :: "'a::pt_name list"
shows "(p \<bullet> (map f lst)) = map (p \<bullet> f) (p \<bullet> lst)"
apply(induct lst, auto)
by(simp add: pt_fun_app_eq[OF pt_name_inst, OF at_name_inst])
lemma cons_perm:
fixes x :: name
and y :: name
and p :: "name prm"
and C :: "'a::pt_name"
shows "((x, y)#p) \<bullet> C = [(x, y)] \<bullet> p \<bullet> C"
by(simp add: pt2[OF pt_name_inst, THEN sym])
simproc_setup cons_perm ("((x, y)#p) \<bullet> C") = {*
fn _ => fn _ => fn ct =>
case Thm.term_of ct of
Const (@{const_name perm}, _ ) $ (Const (@{const_name Cons}, _) $ _ $ p) $ _ =>
(case p of Const (@{const_name Nil}, _) => NONE
| _ => SOME(mk_meta_eq @{thm cons_perm}))
| _ => NONE
*}
lemma distinct_eqvt[eqvt]:
fixes p :: "name prm"
and xs :: "'a::pt_name list"
shows "(p \<bullet> (distinct xs)) = distinct (p \<bullet> xs)"
by(induct xs) (auto simp add: eqvts)
lemma distinct_closed[simp]:
fixes p :: "name prm"
and xs :: "'a::pt_name list"
shows "distinct (p \<bullet> xs) = distinct xs"
apply(induct xs)
apply(auto simp add: eqvts)
apply(drule_tac pi=p in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: eqvts)
apply(drule_tac pi="rev p" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
by(simp add: eqvts)
lemma length_eqvt[eqvt]:
fixes p :: "name prm"
and xs :: "'a::pt_name list"
shows "p \<bullet> (length xs) = length (p \<bullet> xs)"
by(induct xs) (auto simp add: eqvts)
lemma length_closed[simp]:
fixes p :: "name prm"
and xs :: "'a::pt_name list"
shows "length (p \<bullet> xs) = length xs"
by(induct xs) (auto simp add: eqvts)
lemma subset_eqvt[eqvt]:
fixes p :: "name prm"
and S :: "('a::pt_name) set"
and T :: "('a::pt_name) set"
shows "(p \<bullet> (S \<subseteq> T)) = ((p \<bullet> S) \<subseteq> (p \<bullet> T))"
by(rule pt_subseteq_eqvt[OF pt_name_inst, OF at_name_inst])
lemma subset_closed[simp]:
fixes p :: "name prm"
and S :: "('a::pt_name) set"
and T :: "('a::pt_name) set"
shows "((p \<bullet> S) \<subseteq> (p \<bullet> T)) = (S \<subseteq> T)"
apply auto
apply(drule_tac pi=p in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(insert pt_set_bij[OF pt_name_inst, OF at_name_inst])
apply auto
apply(drule_tac pi="rev p" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply auto
apply(subgoal_tac "rev p \<bullet> x \<in> T")
apply auto
apply(drule_tac pi="p" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply auto
apply(drule_tac pi="p" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
by auto
lemma subset_closed'[simp]:
fixes p :: "name prm"
and xvec :: "name list"
and P :: "'a::fs_name"
shows "(set (p \<bullet> xvec) \<subseteq> supp (p \<bullet> P)) = (set xvec \<subseteq> supp P)"
by(simp add: eqvts[THEN sym])
lemma mem_eqvt[eqvt]:
fixes p :: "name prm"
and x :: "'a::pt_name"
and xs :: "('a::pt_name) list"
shows "(p \<bullet> (x mem xs)) = ((p \<bullet> x) mem (p \<bullet> xs))"
by(induct xs)
(auto simp add: pt_bij[OF pt_name_inst, OF at_name_inst] eqvts)
lemma mem_closed[simp]:
fixes p :: "name prm"
and x :: "'a::pt_name"
and xs :: "('a::pt_name) list"
shows "(p \<bullet> x) mem (p \<bullet> xs) = (x mem xs)"
proof -
have "x mem xs = p \<bullet> (x mem xs)"
by(case_tac "x mem xs") auto
thus ?thesis by(simp add: eqvts)
qed
lemma mem_closed'[simp]:
fixes p :: "name prm"
and x :: "'a::pt_name"
and y :: "'b::pt_name"
and xs :: "('a \<times> 'b) list"
shows "((p \<bullet> x, p \<bullet> y) mem (p \<bullet> xs)) = ((x, y) mem xs)"
apply(subst (2) mem_closed[symmetric,where p=p])
by(simp add: eqvts)
lemma fresh_perm:
fixes x :: name
and p :: "name prm"
assumes "x \<sharp> p"
shows "p \<bullet> x = x"
using assms
apply(rule_tac pt_pi_fresh_fresh[OF pt_name_inst, OF at_name_inst])
by(induct p, auto simp add: fresh_list_cons fresh_prod)
lemma fresh_chain_perm_simp:
fixes xvec :: "name list"
and p :: "name prm"
assumes "xvec \<sharp>* p"
shows "p \<bullet> xvec = xvec"
and "rev p \<bullet> xvec = xvec"
using assms
by(induct xvec) (auto simp add: fresh_perm pt_bij1[OF pt_name_inst, OF at_name_inst, THEN sym])
lemma fresh_chain_append[simp]:
fixes xvec :: "name list"
and yvec :: "name list"
and C :: "'a::fs_name"
shows "(xvec@yvec) \<sharp>* C = ((xvec \<sharp>* C) \<and> (yvec \<sharp>* C))"
by(force simp add: fresh_star_def)
lemma subset_fresh:
fixes xvec :: "name list"
and yvec :: "name list"
and C :: "'d::fs_name"
assumes "set xvec \<subseteq> set yvec"
and "yvec \<sharp>* C"
shows "xvec \<sharp>* C"
using assms
by(auto simp add: fresh_star_def)
lemma distinct_perm_cancel[simp]:
fixes p :: "name prm"
and T :: "'a::pt_name"
assumes "distinct_perm p"
shows "(p \<bullet> (p \<bullet> T)) = T"
using assms
proof(induct p)
case Nil
show ?case by simp
next
case(Cons a p)
thus ?case
proof(case_tac a, auto)
fix a b
assume "(a::name) \<sharp> (p::name prm)" "b \<sharp> p" "p \<bullet> p \<bullet> T = T" "a \<noteq> b"
thus "[(a, b)] \<bullet> p \<bullet> [(a, b)] \<bullet> p \<bullet> T = T"
by(subst pt_perm_compose[OF pt_name_inst, OF at_name_inst]) simp
qed
qed
fun compose_perm :: "name list \<Rightarrow> name list \<Rightarrow> name prm"
where
Base: "compose_perm [] [] = []"
| Step: "compose_perm (x#xs) (y#ys) = (x, y)#(compose_perm xs ys)"
| Empty: "compose_perm _ _= []"
lemma compose_perm_induct[consumes 1, case_names c_base c_step]:
fixes xvec :: "name list"
and yvec :: "name list"
and P :: "name list \<Rightarrow> name list \<Rightarrow> bool"
assumes L: "length xvec = length yvec"
and r_base: "P [] []"
and r_step: "\<And>x xvec y yvec. \<lbrakk>length xvec = length yvec; P xvec yvec\<rbrakk> \<Longrightarrow> P (x # xvec) (y # yvec)"
shows "P xvec yvec"
using assms
by(induct rule: compose_perm.induct) auto
lemma compose_perm_eqvt[eqvt]:
fixes p :: "name prm"
and xvec :: "name list"
and yvec :: "name list"
shows "(p \<bullet> (compose_perm xvec yvec)) = compose_perm (p \<bullet> xvec) (p \<bullet> yvec)"
by(induct xvec yvec rule: compose_perm.induct) auto
abbreviation
compose_perm_judge ("[_ _] \<bullet>\<^sub>v _" [80, 80, 80] 80) where "[xvec yvec] \<bullet>\<^sub>v p \<equiv> (compose_perm xvec yvec) \<bullet> p"
abbreviation
compose_perm_inv_judge ("[_ _]\<^sup>- \<bullet>\<^sub>v _" [80, 80, 80] 80) where "[xvec yvec]\<^sup>- \<bullet>\<^sub>v p \<equiv> (rev (compose_perm xvec yvec)) \<bullet> p"
lemma perm_chain_simps[simp]:
fixes xvec :: "name list"
and yvec :: "name list"
and perm :: "name prm"
and p :: "'a::pt_name"
shows "((compose_perm xvec yvec) @ perm) \<bullet> p = [xvec yvec] \<bullet>\<^sub>v (perm \<bullet> p)"
by(simp add: pt2[OF pt_name_inst])
lemma perm_chain_eqvt[eqvt]:
fixes p :: "name prm"
and xvec :: "name list"
and yvec :: "name list"
and x :: "'a::pt_name"
shows "(p \<bullet> ([xvec yvec] \<bullet>\<^sub>v x)) = [(p \<bullet> xvec) (p \<bullet> yvec)] \<bullet>\<^sub>v (p \<bullet> x)"
and "(p \<bullet> ([xvec yvec]\<^sup>- \<bullet>\<^sub>v x)) = [(p \<bullet> xvec) (p \<bullet> yvec)]\<^sup>- \<bullet>\<^sub>v (p \<bullet> x)"
by(subst pt_perm_compose[OF pt_name_inst, OF at_name_inst], simp add: eqvts rev_eqvt)+
lemma perm_chain_bij:
fixes xvec :: "name list"
and yvec :: "name list"
and p :: "'a::pt_name"
and q :: "'a::pt_name"
assumes "length xvec = length yvec"
shows "(([xvec yvec] \<bullet>\<^sub>v p) = ([xvec yvec] \<bullet>\<^sub>v q)) = (p = q)"
and "(([xvec yvec]\<^sup>- \<bullet>\<^sub>v p) = ([xvec yvec]\<^sup>- \<bullet>\<^sub>v q)) = (p = q)"
using assms
by(induct rule: compose_perm_induct)
(auto simp add: pt_bij[OF pt_name_inst, OF at_name_inst])
lemma perm_chain_append:
fixes xvec1 :: "name list"
and yvec1 :: "name list"
and xvec2 :: "name list"
and yvec2 :: "name list"
and p :: "'a::pt_name"
assumes "length xvec1 = length yvec1"
shows "([(xvec1@xvec2) (yvec1@yvec2)] \<bullet>\<^sub>v p) = [xvec1 yvec1] \<bullet>\<^sub>v [xvec2 yvec2] \<bullet>\<^sub>v p"
and "([(xvec1@xvec2) (yvec1@yvec2)]\<^sup>- \<bullet>\<^sub>v p) = [xvec2 yvec2]\<^sup>- \<bullet>\<^sub>v [xvec1 yvec1]\<^sup>- \<bullet>\<^sub>v p"
using assms
by(induct arbitrary: p rule: compose_perm_induct, auto) (simp add: pt2[OF pt_name_inst])
lemma calc_chain_atom:
fixes xvec :: "name list"
and yvec :: "name list"
and x :: name
assumes "length xvec = length yvec"
and "x \<sharp> xvec"
and "x \<sharp> yvec"
shows "[xvec yvec] \<bullet>\<^sub>v x = x"
using assms
by(induct rule: compose_perm_induct, auto)
lemma calc_chain_atom_rev:
fixes xvec :: "name list"
and yvec :: "name list"
and x :: name
assumes "length xvec = length yvec"
and "x \<sharp> xvec"
and "x \<sharp> yvec"
shows "[xvec yvec]\<^sup>- \<bullet>\<^sub>v x = x"
using assms
by(induct rule: compose_perm_induct, auto)
(auto simp add: pt2[OF pt_name_inst] fresh_list_cons calc_atm)
lemma perm_chain_fresh[simp]:
fixes x :: name
and xvec :: "name list"
and yvec :: "name list"
and p :: "'a::pt_name"
assumes "x \<sharp> xvec"
and "x \<sharp> yvec"
and "length xvec = length yvec"
shows "x \<sharp> [xvec yvec] \<bullet>\<^sub>v p = x \<sharp> p"
and "x \<sharp> [xvec yvec]\<^sup>- \<bullet>\<^sub>v p = x \<sharp> p"
using assms
by(auto simp add: fresh_left calc_chain_atom_rev calc_chain_atom)
lemma chain_fresh_fresh:
fixes x :: name
and y :: name
and xvec :: "name list"
and p :: "'a::pt_name"
assumes "x \<sharp> xvec"
and "y \<sharp> xvec"
shows "xvec \<sharp>* ([(x, y)] \<bullet> p) = (xvec \<sharp>* p)"
using assms
by(induct xvec) (auto simp add: fresh_list_cons fresh_left)
lemma perm_chain_fresh_fresh:
fixes xvec :: "name list"
and yvec :: "name list"
and p :: "'a::pt_name"
assumes "xvec \<sharp>* p"
and "yvec \<sharp>* p"
and "length xvec = length yvec"
shows "[xvec yvec] \<bullet>\<^sub>v p = p"
and "[xvec yvec]\<^sup>- \<bullet>\<^sub>v p = p"
using assms
by(induct rule: compose_perm.induct, auto) (simp add: pt2[OF pt_name_inst])
lemma set_fresh[simp]:
fixes x :: name
and xvec :: "name list"
shows "x \<notin> set xvec = x \<sharp> xvec"
by(simp add: name_list_supp fresh_def)
lemma calc_chain:
fixes xvec :: "name list"
and yvec :: "name list"
assumes "yvec \<sharp>* xvec"
and "length xvec = length yvec"
and "distinct xvec"
and "distinct yvec"
shows "[xvec yvec] \<bullet>\<^sub>v xvec = yvec"
using assms
by(induct xvec yvec rule: compose_perm.induct, auto)
(subst cons_perm, simp add: calc_chain_atom calc_atm name_list_supp fresh_def[symmetric])+
lemma fresh_chain_perm:
fixes xvec :: "name list"
and yvec :: "name list"
and x :: name
and C :: "'a::pt_name"
assumes "length xvec = length yvec"
and "yvec \<sharp>* C"
and "xvec \<sharp>* yvec"
and "x mem xvec"
and "distinct yvec"
shows "x \<sharp> [xvec yvec] \<bullet>\<^sub>v C"
using assms
proof(induct rule: compose_perm_induct)
case c_base