-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBisim_Pres.thy
532 lines (479 loc) · 32.7 KB
/
Bisim_Pres.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
theory Bisim_Pres
imports Bisimulation Sim_Pres
begin
context env begin
lemma bisim_input_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and xvec :: "name list"
and N :: 'a
assumes "\<And>Tvec. length xvec = length Tvec \<Longrightarrow> \<Psi> \<rhd> P[xvec::=Tvec] \<sim> Q[xvec::=Tvec]"
shows "\<Psi> \<rhd> M\<lparr>\<lambda>*xvec N\<rparr>.P \<sim> M\<lparr>\<lambda>*xvec N\<rparr>.Q"
proof -
let ?X = "{(\<Psi>, M\<lparr>\<lambda>*xvec N\<rparr>.P, M\<lparr>\<lambda>*xvec N\<rparr>.Q) | \<Psi> M xvec N P Q. \<forall>Tvec. length xvec = length Tvec \<longrightarrow> \<Psi> \<rhd> P[xvec::=Tvec] \<sim> Q[xvec::=Tvec]}"
from assms have "(\<Psi>, M\<lparr>\<lambda>*xvec N\<rparr>.P, M\<lparr>\<lambda>*xvec N\<rparr>.Q) \<in> ?X" by blast
thus ?thesis
proof(coinduct rule: bisim_coinduct)
case(c_stat_eq \<Psi> P Q)
thus ?case by auto
next
case(c_sim \<Psi> P Q)
thus ?case by(blast intro: input_pres)
next
case(c_ext \<Psi> P Q \<Psi>')
thus ?case by(blast dest: bisimE)
next
case(c_sym \<Psi> P Q)
thus ?case by(blast dest: bisimE)
qed
qed
lemma bisim_output_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and M :: 'a
and N :: 'a
assumes "\<Psi> \<rhd> P \<sim> Q"
shows "\<Psi> \<rhd> M\<langle>N\<rangle>.P \<sim> M\<langle>N\<rangle>.Q"
proof -
let ?X = "{(\<Psi>, M\<langle>N\<rangle>.P, M\<langle>N\<rangle>.Q) | \<Psi> M N P Q. \<Psi> \<rhd> P \<sim> Q}"
from `\<Psi> \<rhd> P \<sim> Q` have "(\<Psi>, M\<langle>N\<rangle>.P, M\<langle>N\<rangle>.Q) \<in> ?X" by auto
thus ?thesis
by(coinduct rule: bisim_coinduct, auto) (blast intro: output_pres dest: bisimE)+
qed
lemma bisim_case_pres:
fixes \<Psi> :: 'b
and CsP :: "('c \<times> ('a, 'b, 'c) psi) list"
and CsQ :: "('c \<times> ('a, 'b, 'c) psi) list"
assumes "\<And>\<phi> P. (\<phi>, P) mem CsP \<Longrightarrow> \<exists>Q. (\<phi>, Q) mem CsQ \<and> guarded Q \<and> \<Psi> \<rhd> P \<sim> Q"
and "\<And>\<phi> Q. (\<phi>, Q) mem CsQ \<Longrightarrow> \<exists>P. (\<phi>, P) mem CsP \<and> guarded P \<and> \<Psi> \<rhd> P \<sim> Q"
shows "\<Psi> \<rhd> Cases CsP \<sim> Cases CsQ"
proof -
let ?X = "{(\<Psi>, Cases CsP, Cases CsQ) | \<Psi> CsP CsQ. (\<forall>\<phi> P. (\<phi>, P) mem CsP \<longrightarrow> (\<exists>Q. (\<phi>, Q) mem CsQ \<and> guarded Q \<and> \<Psi> \<rhd> P \<sim> Q)) \<and>
(\<forall>\<phi> Q. (\<phi>, Q) mem CsQ \<longrightarrow> (\<exists>P. (\<phi>, P) mem CsP \<and> guarded P \<and> \<Psi> \<rhd> P \<sim> Q))}"
from assms have "(\<Psi>, Cases CsP, Cases CsQ) \<in> ?X" by auto
thus ?thesis
proof(coinduct rule: bisim_coinduct)
case(c_stat_eq \<Psi> P Q)
thus ?case by auto
next
case(c_sim \<Psi> CasesP CasesQ)
then obtain CsP CsQ where C1: "\<And>\<phi> Q. (\<phi>, Q) mem CsQ \<Longrightarrow> \<exists>P. (\<phi>, P) mem CsP \<and> guarded P \<and> \<Psi> \<rhd> P \<sim> Q"
and A: "CasesP = Cases CsP" and B: "CasesQ = Cases CsQ"
by auto
note C1
moreover have "\<And>\<Psi> P Q. \<Psi> \<rhd> P \<sim> Q \<Longrightarrow> \<Psi> \<rhd> P \<leadsto>[bisim] Q" by(rule bisimE)
moreover have "bisim \<subseteq> ?X \<union> bisim" by blast
ultimately have "\<Psi> \<rhd> Cases CsP \<leadsto>[(?X \<union> bisim)] Cases CsQ"
by(rule case_pres)
thus ?case using A B by blast
next
case(c_ext \<Psi> P Q)
thus ?case by(blast dest: bisimE)
next
case(c_sym \<Psi> P Q)
thus ?case by(blast dest: bisimE)
qed
qed
lemma bisim_res_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and x :: name
assumes "\<Psi> \<rhd> P \<sim> Q"
and "x \<sharp> \<Psi>"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<sim> \<lparr>\<nu>x\<rparr>Q"
proof -
let ?X = "{(\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) | \<Psi> x P Q. \<Psi> \<rhd> P \<sim> Q \<and> x \<sharp> \<Psi>}"
from assms have "(\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X" by auto
thus ?thesis
proof(coinduct rule: bisim_coinduct)
case(c_stat_eq \<Psi> xP xQ)
from `(\<Psi>, xP, xQ) \<in> ?X` obtain x P Q where "\<Psi> \<rhd> P \<sim> Q" and "x \<sharp> \<Psi>" and "xP = \<lparr>\<nu>x\<rparr>P" and "xQ = \<lparr>\<nu>x\<rparr>Q"
by auto
moreover from `\<Psi> \<rhd> P \<sim> Q` have PeqQ: "insert_assertion(extract_frame P) \<Psi> \<simeq>\<^sub>F insert_assertion(extract_frame Q) \<Psi>"
by(rule bisimE)
ultimately show ?case by(auto intro: frame_res_pres)
next
case(c_sim \<Psi> xP xQ)
from `(\<Psi>, xP, xQ) \<in> ?X` obtain x P Q where "\<Psi> \<rhd> P \<sim> Q" and "x \<sharp> \<Psi>" and "xP = \<lparr>\<nu>x\<rparr>P" and "xQ = \<lparr>\<nu>x\<rparr>Q"
by auto
from `\<Psi> \<rhd> P \<sim> Q` have "\<Psi> \<rhd> P \<leadsto>[bisim] Q" by(rule bisimE)
moreover have "eqvt ?X"
by(force simp add: eqvt_def bisim_closed pt_fresh_bij[OF pt_name_inst, OF at_name_inst])
hence "eqvt(?X \<union> bisim)" by auto
moreover note `x \<sharp> \<Psi>`
moreover have "bisim \<subseteq> ?X \<union> bisim" by auto
moreover have "\<And>\<Psi> P Q x. \<lbrakk>(\<Psi>, P, Q) \<in> bisim; x \<sharp> \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X \<union> bisim"
by auto
ultimately have "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<leadsto>[(?X \<union> bisim)] \<lparr>\<nu>x\<rparr>Q"
by(rule res_pres)
with `xP = \<lparr>\<nu>x\<rparr>P` `xQ = \<lparr>\<nu>x\<rparr>Q` show ?case
by simp
next
case(c_ext \<Psi> xP xQ \<Psi>')
from `(\<Psi>, xP, xQ) \<in> ?X` obtain x P Q where "\<Psi> \<rhd> P \<sim> Q" and "x \<sharp> \<Psi>" and "xP = \<lparr>\<nu>x\<rparr>P" and "xQ = \<lparr>\<nu>x\<rparr>Q"
by auto
obtain y::name where "y \<sharp> P" and "y \<sharp> Q" and "y \<sharp> \<Psi>" and "y \<sharp> \<Psi>'"
by(generate_fresh "name", auto simp add: fresh_prod)
from `\<Psi> \<rhd> P \<sim> Q` have "\<Psi> \<otimes> ([(x, y)] \<bullet> \<Psi>') \<rhd> P \<sim> Q"
by(rule bisimE)
hence "([(x, y)] \<bullet> (\<Psi> \<otimes> ([(x, y)] \<bullet> \<Psi>'))) \<rhd> ([(x, y)] \<bullet> P) \<sim> ([(x, y)] \<bullet> Q)"
by(rule bisim_closed)
with `x \<sharp> \<Psi>` `y \<sharp> \<Psi>` have "\<Psi> \<otimes> \<Psi>' \<rhd> ([(x, y)] \<bullet> P) \<sim> ([(x, y)] \<bullet> Q)"
by(simp add: eqvts)
with `y \<sharp> \<Psi>` `y \<sharp> \<Psi>'` have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P), \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> Q)) \<in> ?X"
by auto
moreover from `y \<sharp> P` `y \<sharp> Q` have "\<lparr>\<nu>x\<rparr>P = \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)" and "\<lparr>\<nu>x\<rparr>Q = \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> Q)"
by(simp add: alpha_res)+
ultimately show ?case using `xP = \<lparr>\<nu>x\<rparr>P` `xQ = \<lparr>\<nu>x\<rparr>Q` by simp
next
case(c_sym \<Psi> P Q)
thus ?case
by(blast dest: bisimE)
qed
qed
lemma bisim_res_chain_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and xvec :: "name list"
assumes "\<Psi> \<rhd> P \<sim> Q"
and "xvec \<sharp>* \<Psi>"
shows "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>P \<sim> \<lparr>\<nu>*xvec\<rparr>Q"
using assms
by(induct xvec) (auto intro: bisim_res_pres)
lemma bisim_par_pres_aux:
fixes \<Psi> :: 'b
and \<Psi>\<^sub>R :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
and A\<^sub>R :: "name list"
assumes "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q"
and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>"
and "A\<^sub>R \<sharp>* \<Psi>"
and "A\<^sub>R \<sharp>* P"
and "A\<^sub>R \<sharp>* Q"
shows "\<Psi> \<rhd> P \<parallel> R \<sim> Q \<parallel> R"
proof -
let ?X = "{(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R), \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)) | xvec \<Psi> P Q R. xvec \<sharp>* \<Psi> \<and> (\<forall>A\<^sub>R \<Psi>\<^sub>R. (extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle> \<and> A\<^sub>R \<sharp>* \<Psi> \<and> A\<^sub>R \<sharp>* P \<and> A\<^sub>R \<sharp>* Q) \<longrightarrow>
\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q)}"
{
fix xvec :: "name list"
and \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assume "xvec \<sharp>* \<Psi>"
and "\<And>A\<^sub>R \<Psi>\<^sub>R. \<lbrakk>extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>; A\<^sub>R \<sharp>* \<Psi>; A\<^sub>R \<sharp>* P; A\<^sub>R \<sharp>* Q\<rbrakk> \<Longrightarrow> \<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q"
hence "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R), \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)) \<in> ?X"
apply auto
by blast
}
note XI = this
{
fix xvec :: "name list"
and \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
and C :: "'d::fs_name"
assume "xvec \<sharp>* \<Psi>"
and A: "\<And>A\<^sub>R \<Psi>\<^sub>R. \<lbrakk>extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>; A\<^sub>R \<sharp>* \<Psi>; A\<^sub>R \<sharp>* P; A\<^sub>R \<sharp>* Q; A\<^sub>R \<sharp>* C\<rbrakk> \<Longrightarrow> \<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q"
from `xvec \<sharp>* \<Psi>` have "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R), \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)) \<in> ?X"
proof(rule XI)
fix A\<^sub>R \<Psi>\<^sub>R
assume FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>"
obtain p::"name prm" where "(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>" and "(p \<bullet> A\<^sub>R) \<sharp>* P" and "(p \<bullet> A\<^sub>R) \<sharp>* Q" and "(p \<bullet> A\<^sub>R) \<sharp>* R" and "(p \<bullet> A\<^sub>R) \<sharp>* C"
and "(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>\<^sub>R" and S: "(set p) \<subseteq> (set A\<^sub>R) \<times> (set(p \<bullet> A\<^sub>R))" and "distinct_perm p"
by(rule_tac c="(\<Psi>, P, Q, R, \<Psi>\<^sub>R, C)" in name_list_avoiding) auto
from FrR `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>\<^sub>R` S have "extract_frame R = \<langle>(p \<bullet> A\<^sub>R), p \<bullet> \<Psi>\<^sub>R\<rangle>" by(simp add: frame_chain_alpha')
moreover assume "A\<^sub>R \<sharp>* \<Psi>"
hence "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> \<Psi>)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `A\<^sub>R \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>` S have "(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>" by simp
moreover assume "A\<^sub>R \<sharp>* P"
hence "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> P)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `A\<^sub>R \<sharp>* P` `(p \<bullet> A\<^sub>R) \<sharp>* P` S have "(p \<bullet> A\<^sub>R) \<sharp>* P" by simp
moreover assume "A\<^sub>R \<sharp>* Q"
hence "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> Q)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `A\<^sub>R \<sharp>* Q` `(p \<bullet> A\<^sub>R) \<sharp>* Q` S have "(p \<bullet> A\<^sub>R) \<sharp>* Q" by simp
ultimately have "\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R) \<rhd> P \<sim> Q" using `(p \<bullet> A\<^sub>R) \<sharp>* C` A by blast
hence "(p \<bullet> (\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R))) \<rhd> (p \<bullet> P) \<sim> (p \<bullet> Q)" by(rule bisim_closed)
with `A\<^sub>R \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `(p \<bullet> A\<^sub>R) \<sharp>* P` `A\<^sub>R \<sharp>* Q` `(p \<bullet> A\<^sub>R) \<sharp>* Q` S `distinct_perm p`
show "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q" by(simp add: eqvts)
qed
}
note XI' = this
have "eqvt ?X"
apply(auto simp add: eqvt_def)
apply(rule_tac x="p \<bullet> xvec" in exI)
apply(rule_tac x="p \<bullet> P" in exI)
apply(rule_tac x="p \<bullet> Q" in exI)
apply(rule_tac x="p \<bullet> R" in exI)
apply(simp add: eqvts)
apply(simp add: fresh_star_bij)
apply(clarify)
apply(erule_tac x="(rev p) \<bullet> A\<^sub>R" in allE)
apply(erule_tac x="(rev p) \<bullet> \<Psi>\<^sub>R" in allE)
apply(drule mp)
apply(rule conjI)
apply(rule_tac pi=p in pt_bij4[OF pt_name_inst, OF at_name_inst])
apply(simp add: eqvts)
defer
apply(drule_tac p=p in bisim_closed)
apply(simp add: eqvts)
apply(subst pt_fresh_star_bij[OF pt_name_inst,OF at_name_inst, of p, THEN sym])
apply simp
apply(subst pt_fresh_star_bij[OF pt_name_inst,OF at_name_inst, of p, THEN sym])
apply simp
apply(subst pt_fresh_star_bij[OF pt_name_inst,OF at_name_inst, of p, THEN sym])
by simp
moreover have Res: "\<And>\<Psi> P Q x. \<lbrakk>(\<Psi>, P, Q) \<in> ?X \<union> bisim; x \<sharp> \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X \<union> bisim"
proof -
fix \<Psi> P Q x
assume "(\<Psi>, P, Q) \<in> ?X \<union> bisim" and "(x::name) \<sharp> \<Psi>"
show "(\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X \<union> bisim"
proof(case_tac "(\<Psi>, P, Q) \<in> ?X")
assume "(\<Psi>, P, Q) \<in> ?X"
with `x \<sharp> \<Psi>` have "(\<Psi>, \<lparr>\<nu>x\<rparr>P, \<lparr>\<nu>x\<rparr>Q) \<in> ?X"
apply auto
by(rule_tac x="x#xvec" in exI) auto
thus ?thesis by simp
next
assume "\<not>(\<Psi>, P, Q) \<in> ?X"
with `(\<Psi>, P, Q) \<in> ?X \<union> bisim` have "\<Psi> \<rhd> P \<sim> Q"
by blast
hence "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>P \<sim> \<lparr>\<nu>x\<rparr>Q" using `x \<sharp> \<Psi>`
by(rule bisim_res_pres)
thus ?thesis
by simp
qed
qed
have "(\<Psi>, P \<parallel> R, Q \<parallel> R) \<in> ?X"
proof -
{
fix A\<^sub>R' :: "name list"
and \<Psi>\<^sub>R' :: 'b
assume Fr_r': "extract_frame R = \<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle>"
and "A\<^sub>R' \<sharp>* \<Psi>"
and "A\<^sub>R' \<sharp>* P"
and "A\<^sub>R' \<sharp>* Q"
obtain p where "(p \<bullet> A\<^sub>R') \<sharp>* A\<^sub>R" and "(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>\<^sub>R'" and "(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>" and "(p \<bullet> A\<^sub>R') \<sharp>* P" and "(p \<bullet> A\<^sub>R') \<sharp>* Q"
and Sp: "(set p) \<subseteq> (set A\<^sub>R') \<times> (set(p \<bullet> A\<^sub>R'))" and "distinct_perm p"
by(rule_tac c="(A\<^sub>R, \<Psi>, \<Psi>\<^sub>R', P, Q)" in name_list_avoiding) auto
from Fr_r' `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>\<^sub>R'` Sp have "extract_frame R = \<langle>(p \<bullet> A\<^sub>R'), p \<bullet> \<Psi>\<^sub>R'\<rangle>"
by(simp add: frame_chain_alpha eqvts)
with FrR `(p \<bullet> A\<^sub>R') \<sharp>* A\<^sub>R` obtain q::"name prm"
where Sq: "set q \<subseteq> set(p \<bullet> A\<^sub>R') \<times> set A\<^sub>R" and "distinct_perm q" and "\<Psi>\<^sub>R = q \<bullet> p \<bullet> \<Psi>\<^sub>R'"
by(force elim: frame_chain_eq)
from `\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q` `\<Psi>\<^sub>R = q \<bullet> p \<bullet> \<Psi>\<^sub>R'` have "\<Psi> \<otimes> (q \<bullet> p \<bullet> \<Psi>\<^sub>R') \<rhd> P \<sim> Q" by simp
hence "(q \<bullet> (\<Psi> \<otimes> (q \<bullet> p \<bullet> \<Psi>\<^sub>R'))) \<rhd> (q \<bullet> P) \<sim> (q \<bullet> Q)" by(rule bisim_closed)
with Sq `A\<^sub>R \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `(p \<bullet> A\<^sub>R') \<sharp>* P` `A\<^sub>R \<sharp>* Q` `(p \<bullet> A\<^sub>R') \<sharp>* Q` `distinct_perm q`
have "\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R') \<rhd> P \<sim> Q" by(simp add: eqvts)
hence "(p \<bullet> (\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R'))) \<rhd> (p \<bullet> P) \<sim> (p \<bullet> Q)" by(rule bisim_closed)
with Sp `A\<^sub>R' \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>` `A\<^sub>R' \<sharp>* P` `(p \<bullet> A\<^sub>R') \<sharp>* P` `A\<^sub>R' \<sharp>* Q` `(p \<bullet> A\<^sub>R') \<sharp>* Q` `distinct_perm p`
have "\<Psi> \<otimes> \<Psi>\<^sub>R' \<rhd> P \<sim> Q" by(simp add: eqvts)
}
thus ?thesis
apply auto
apply(rule_tac x="[]" in exI)
by auto blast
qed
thus ?thesis
proof(coinduct rule: bisim_coinduct)
case(c_stat_eq \<Psi> PR QR)
from `(\<Psi>, PR, QR) \<in> ?X`
obtain xvec P Q R A\<^sub>R \<Psi>\<^sub>R where P_frR: "PR = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R)" and Q_frR: "QR = \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)"
and "xvec \<sharp>* \<Psi>" and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" and P_simQ: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q"
and "A\<^sub>R \<sharp>* xvec" and "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* Q" and "A\<^sub>R \<sharp>* R"
apply auto
apply(subgoal_tac "\<exists>A\<^sub>R \<Psi>\<^sub>R. extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle> \<and> A\<^sub>R \<sharp>* (xvec, \<Psi>, P, Q, R)")
apply auto
apply(rule_tac F="extract_frame R" and C="(xvec, \<Psi>, P, Q, R)" in fresh_frame)
by auto
obtain A\<^sub>P \<Psi>\<^sub>P where FrP: "extract_frame P = \<langle>A\<^sub>P, \<Psi>\<^sub>P\<rangle>" and "A\<^sub>P \<sharp>* \<Psi>" and "A\<^sub>P \<sharp>* A\<^sub>R" and "A\<^sub>P \<sharp>* \<Psi>\<^sub>R"
by(rule_tac C="(\<Psi>, A\<^sub>R, \<Psi>\<^sub>R)" in fresh_frame) auto
obtain A\<^sub>Q \<Psi>\<^sub>Q where FrQ: "extract_frame Q = \<langle>A\<^sub>Q, \<Psi>\<^sub>Q\<rangle>" and "A\<^sub>Q \<sharp>* \<Psi>" and "A\<^sub>Q \<sharp>* A\<^sub>R" and "A\<^sub>Q \<sharp>* \<Psi>\<^sub>R"
by(rule_tac C="(\<Psi>, A\<^sub>R, \<Psi>\<^sub>R)" in fresh_frame) auto
from `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `A\<^sub>P \<sharp>* A\<^sub>R` `A\<^sub>Q \<sharp>* A\<^sub>R` FrP FrQ have "A\<^sub>R \<sharp>* \<Psi>\<^sub>P" and "A\<^sub>R \<sharp>* \<Psi>\<^sub>Q"
by(force dest: extract_frame_fresh_chain)+
have "\<langle>(A\<^sub>P@A\<^sub>R), \<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>R\<rangle> \<simeq>\<^sub>F \<langle>(A\<^sub>Q@A\<^sub>R), \<Psi> \<otimes> \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>R\<rangle>"
proof -
have "\<langle>A\<^sub>P, \<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>R\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P\<rangle>"
by(metis frame_res_chain_pres frame_nil_stat_eq Associativity Commutativity Assertion_stat_eq_trans Composition)
moreover from P_simQ have "insert_assertion(extract_frame P) (\<Psi> \<otimes> \<Psi>\<^sub>R) \<simeq>\<^sub>F insert_assertion(extract_frame Q) (\<Psi> \<otimes> \<Psi>\<^sub>R)"
by(rule bisimE)
with FrP FrQ fresh_comp_chain `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>P \<sharp>* \<Psi>\<^sub>R` `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>R` have "\<langle>A\<^sub>P, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>P\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q\<rangle>"
by auto
moreover have "\<langle>A\<^sub>Q, (\<Psi> \<otimes> \<Psi>\<^sub>R) \<otimes> \<Psi>\<^sub>Q\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>Q, \<Psi> \<otimes> \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>R\<rangle>"
by(metis frame_res_chain_pres frame_nil_stat_eq Associativity Commutativity Assertion_stat_eq_trans Composition)
ultimately have "\<langle>A\<^sub>P, \<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>R\<rangle> \<simeq>\<^sub>F \<langle>A\<^sub>Q, \<Psi> \<otimes> \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>R\<rangle>"
by(blast intro: Frame_stat_eq_trans)
hence "\<langle>(A\<^sub>R@A\<^sub>P), \<Psi> \<otimes> \<Psi>\<^sub>P \<otimes> \<Psi>\<^sub>R\<rangle> \<simeq>\<^sub>F \<langle>(A\<^sub>R@A\<^sub>Q), \<Psi> \<otimes> \<Psi>\<^sub>Q \<otimes> \<Psi>\<^sub>R\<rangle>"
by(drule_tac frame_res_chain_pres) (simp add: frame_chain_append)
thus ?thesis
apply(simp add: frame_chain_append)
by(metis frame_res_chain_comm Frame_stat_eq_trans)
qed
moreover from `A\<^sub>P \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* \<Psi>` have "(A\<^sub>P@A\<^sub>R) \<sharp>* \<Psi>" by simp
moreover from `A\<^sub>Q \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* \<Psi>` have "(A\<^sub>Q@A\<^sub>R) \<sharp>* \<Psi>" by simp
ultimately have P_frRQR: "insert_assertion(extract_frame(P \<parallel> R)) \<Psi> \<simeq>\<^sub>F insert_assertion(extract_frame(Q \<parallel> R)) \<Psi>"
using FrP FrQ FrR `A\<^sub>P \<sharp>* A\<^sub>R` `A\<^sub>P \<sharp>* \<Psi>\<^sub>R` `A\<^sub>Q \<sharp>* A\<^sub>R` `A\<^sub>Q \<sharp>* \<Psi>\<^sub>R` `A\<^sub>R \<sharp>* \<Psi>\<^sub>P` `A\<^sub>R \<sharp>* \<Psi>\<^sub>Q`
by simp
from `xvec \<sharp>* \<Psi>` have "insert_assertion (extract_frame(\<lparr>\<nu>*xvec\<rparr>P \<parallel> R)) \<Psi> \<simeq>\<^sub>F \<lparr>\<nu>*xvec\<rparr>(insert_assertion (extract_frame(P \<parallel> R)) \<Psi>)"
by(rule insert_assertion_extract_frame_fresh)
moreover from P_frRQR have "\<lparr>\<nu>*xvec\<rparr>(insert_assertion (extract_frame(P \<parallel> R)) \<Psi>) \<simeq>\<^sub>F \<lparr>\<nu>*xvec\<rparr>(insert_assertion (extract_frame(Q \<parallel> R)) \<Psi>)"
by(induct xvec) (auto intro: frame_res_pres)
moreover from `xvec \<sharp>* \<Psi>` have "\<lparr>\<nu>*xvec\<rparr>(insert_assertion (extract_frame(Q \<parallel> R)) \<Psi>) \<simeq>\<^sub>F insert_assertion (extract_frame(\<lparr>\<nu>*xvec\<rparr>Q \<parallel> R)) \<Psi>"
by(rule Frame_stat_eq_sym[OF insert_assertion_extract_frame_fresh])
ultimately show ?case using P_frR Q_frR
by(blast intro: Frame_stat_eq_trans)
next
case(c_sim \<Psi> PR QR)
{
fix \<Psi> P Q R xvec
assume "\<And>A\<^sub>R \<Psi>\<^sub>R. \<lbrakk>extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>; A\<^sub>R \<sharp>* \<Psi>; A\<^sub>R \<sharp>* P; A\<^sub>R \<sharp>* Q\<rbrakk> \<Longrightarrow> \<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q"
moreover have "eqvt bisim" by simp
moreover from `eqvt ?X` have "eqvt(?X \<union> bisim)" by auto
moreover from bisimE(1) have "\<And>\<Psi> P Q. \<Psi> \<rhd> P \<sim> Q \<Longrightarrow> insert_assertion (extract_frame Q) \<Psi> \<hookrightarrow>\<^sub>F insert_assertion (extract_frame P) \<Psi>" by(simp add: Frame_stat_eq_def)
moreover note bisimE(2) bisimE(3)
moreover
{
fix \<Psi> P Q A\<^sub>R \<Psi>\<^sub>R R
assume P_simQ: "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q"
and FrR: "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>"
and "A\<^sub>R \<sharp>* \<Psi>"
and "A\<^sub>R \<sharp>* P"
and "A\<^sub>R \<sharp>* Q"
hence "(\<Psi>, P \<parallel> R, Q \<parallel> R) \<in> ?X"
proof -
have "P \<parallel> R = \<lparr>\<nu>*[]\<rparr>(P \<parallel> R)" by simp
moreover have "Q \<parallel> R = \<lparr>\<nu>*[]\<rparr>(Q \<parallel> R)" by simp
moreover have "([]::name list) \<sharp>* \<Psi>" by simp
moreover
{
fix A\<^sub>R' \<Psi>\<^sub>R'
assume Fr_r': "extract_frame R = \<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle>"
and "A\<^sub>R' \<sharp>* \<Psi>"
and "A\<^sub>R' \<sharp>* P"
and "A\<^sub>R' \<sharp>* Q"
obtain p where "(p \<bullet> A\<^sub>R') \<sharp>* A\<^sub>R"
and "(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>\<^sub>R'"
and "(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>"
and "(p \<bullet> A\<^sub>R') \<sharp>* P"
and "(p \<bullet> A\<^sub>R') \<sharp>* Q"
and S: "(set p) \<subseteq> (set A\<^sub>R') \<times> (set(p \<bullet> A\<^sub>R'))" and "distinct_perm p"
by(rule_tac c="(A\<^sub>R, \<Psi>, \<Psi>\<^sub>R', P, Q)" in name_list_avoiding) auto
from `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>\<^sub>R'` S have "\<langle>A\<^sub>R', \<Psi>\<^sub>R'\<rangle> = \<langle>p \<bullet> A\<^sub>R', p \<bullet> \<Psi>\<^sub>R'\<rangle>"
by(simp add: frame_chain_alpha)
with Fr_r' have Fr_r'': "extract_frame R = \<langle>p \<bullet> A\<^sub>R', p \<bullet> \<Psi>\<^sub>R'\<rangle>" by simp
with FrR `(p \<bullet> A\<^sub>R') \<sharp>* A\<^sub>R`
obtain q where "p \<bullet> \<Psi>\<^sub>R' = (q::name prm) \<bullet> \<Psi>\<^sub>R" and S': "set q \<subseteq> (set A\<^sub>R) \<times> set(p \<bullet> A\<^sub>R')" and "distinct_perm q"
apply auto
apply(drule_tac sym) apply simp
by(drule_tac frame_chain_eq) auto
from P_simQ have "(q \<bullet> (\<Psi> \<otimes> \<Psi>\<^sub>R)) \<rhd> (q \<bullet> P) \<sim> (q \<bullet> Q)"
by(rule bisim_closed)
with `A\<^sub>R \<sharp>* \<Psi>` `A\<^sub>R \<sharp>* P` `A\<^sub>R \<sharp>* Q` `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R') \<sharp>* P` `(p \<bullet> A\<^sub>R') \<sharp>* Q` S'
have "\<Psi> \<otimes> (q \<bullet> \<Psi>\<^sub>R) \<rhd> P \<sim> Q" by(simp add: eqvts)
hence "(p \<bullet> (\<Psi> \<otimes> (q \<bullet> \<Psi>\<^sub>R))) \<rhd> (p \<bullet> P) \<sim> (p \<bullet> Q)" by(rule bisim_closed)
with `A\<^sub>R' \<sharp>* \<Psi>` `A\<^sub>R' \<sharp>* P` `A\<^sub>R' \<sharp>* Q` `(p \<bullet> A\<^sub>R') \<sharp>* \<Psi>` `(p \<bullet> A\<^sub>R') \<sharp>* P` `(p \<bullet> A\<^sub>R') \<sharp>* Q` S `distinct_perm p` `(p \<bullet> \<Psi>\<^sub>R') = q \<bullet> \<Psi>\<^sub>R`
have "\<Psi> \<otimes> \<Psi>\<^sub>R' \<rhd> P \<sim> Q"
by(drule_tac sym) (simp add: eqvts)
}
ultimately show ?thesis
by blast
qed
hence "(\<Psi>, P \<parallel> R, Q \<parallel> R) \<in> ?X \<union> bisim"
by simp
}
moreover have "\<And>\<Psi> P Q xvec. \<lbrakk>(\<Psi>, P, Q) \<in> ?X \<union> bisim; (xvec::name list) \<sharp>* \<Psi>\<rbrakk> \<Longrightarrow> (\<Psi>, \<lparr>\<nu>*xvec\<rparr>P, \<lparr>\<nu>*xvec\<rparr>Q) \<in> ?X \<union> bisim"
proof -
fix \<Psi> P Q xvec
assume "(\<Psi>, P, Q) \<in> ?X \<union> bisim"
assume "(xvec::name list) \<sharp>* \<Psi>"
thus "(\<Psi>, \<lparr>\<nu>*xvec\<rparr>P, \<lparr>\<nu>*xvec\<rparr>Q) \<in> ?X \<union> bisim"
proof(induct xvec)
case Nil
thus ?case using `(\<Psi>, P, Q) \<in> ?X \<union> bisim` by simp
next
case(Cons x xvec)
thus ?case by(simp only: res_chain.simps) (rule_tac Res, auto)
qed
qed
ultimately have "\<Psi> \<rhd> P \<parallel> R \<leadsto>[(?X \<union> bisim)] Q \<parallel> R" using stat_eq_bisim
by(rule par_pres)
moreover assume "(xvec::name list) \<sharp>* \<Psi>"
moreover from `eqvt ?X` have "eqvt(?X \<union> bisim)" by auto
ultimately have "\<Psi> \<rhd> \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R) \<leadsto>[(?X \<union> bisim)] \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)" using Res
by(rule_tac res_chain_pres)
}
with `(\<Psi>, PR, QR) \<in> ?X` show ?case by blast
next
case(c_ext \<Psi> PR QR \<Psi>')
from `(\<Psi>, PR, QR) \<in> ?X`
obtain xvec P Q R A\<^sub>R \<Psi>\<^sub>R where P_frR: "PR = \<lparr>\<nu>*xvec\<rparr>(P \<parallel> R)" and Q_frR: "QR = \<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R)"
and "xvec \<sharp>* \<Psi>" and A: "\<forall>A\<^sub>R \<Psi>\<^sub>R. (extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle> \<and> A\<^sub>R \<sharp>* \<Psi> \<and> A\<^sub>R \<sharp>* P \<and> A\<^sub>R \<sharp>* Q) \<longrightarrow> \<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q"
by auto
obtain p where "(p \<bullet> xvec) \<sharp>* \<Psi>"
and "(p \<bullet> xvec) \<sharp>* P"
and "(p \<bullet> xvec) \<sharp>* Q"
and "(p \<bullet> xvec) \<sharp>* R"
and "(p \<bullet> xvec) \<sharp>* \<Psi>'"
and S: "(set p) \<subseteq> (set xvec) \<times> (set(p \<bullet> xvec))" and "distinct_perm p"
by(rule_tac c="(\<Psi>, P, Q, R, \<Psi>')" in name_list_avoiding) auto
from `(p \<bullet> xvec) \<sharp>* P` `(p \<bullet> xvec) \<sharp>* R` S have "\<lparr>\<nu>*xvec\<rparr>(P \<parallel> R) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(p \<bullet> (P \<parallel> R))"
by(subst res_chain_alpha) auto
hence P_r_alpha: "\<lparr>\<nu>*xvec\<rparr>(P \<parallel> R) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> (p \<bullet> R))"
by(simp add: eqvts)
from `(p \<bullet> xvec) \<sharp>* Q` `(p \<bullet> xvec) \<sharp>* R` S have "\<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(p \<bullet> (Q \<parallel> R))"
by(subst res_chain_alpha) auto
hence Q_r_alpha: "\<lparr>\<nu>*xvec\<rparr>(Q \<parallel> R) = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> Q) \<parallel> (p \<bullet> R))"
by(simp add: eqvts)
from `(p \<bullet> xvec) \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>'` have "(\<Psi> \<otimes> \<Psi>', \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> P) \<parallel> (p \<bullet> R)), \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>((p \<bullet> Q) \<parallel> (p \<bullet> R))) \<in> ?X"
proof(rule_tac C2="(\<Psi>, (p \<bullet> P), (p \<bullet> Q), R, \<Psi>', xvec, p \<bullet> xvec)" in XI', auto)
fix A\<^sub>R \<Psi>\<^sub>R
assume FrR: "extract_frame (p \<bullet> R) = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" and "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* \<Psi>'" and "A\<^sub>R \<sharp>* (p \<bullet> P)" and "A\<^sub>R \<sharp>* (p \<bullet> Q)"
from FrR have "(p \<bullet> (extract_frame (p \<bullet> R))) = (p \<bullet> \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>)" by simp
with `distinct_perm p` have "extract_frame R = \<langle>p \<bullet> A\<^sub>R, p \<bullet> \<Psi>\<^sub>R\<rangle>" by(simp add: eqvts)
moreover from `A\<^sub>R \<sharp>* \<Psi>` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> \<Psi>)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `xvec \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>` S have "(p \<bullet> A\<^sub>R) \<sharp>* \<Psi>" by simp
moreover from `A\<^sub>R \<sharp>* (p \<bullet> P)` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> p \<bullet> P)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `distinct_perm p` have "(p \<bullet> A\<^sub>R) \<sharp>* P" by simp
moreover from `A\<^sub>R \<sharp>* (p \<bullet> Q)` have "(p \<bullet> A\<^sub>R) \<sharp>* (p \<bullet> p \<bullet> Q)" by(simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
with `distinct_perm p` have "(p \<bullet> A\<^sub>R) \<sharp>* Q" by simp
ultimately have "\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R) \<rhd> P \<sim> Q" using A by blast
hence "(\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> (p \<bullet> \<Psi>') \<rhd> P \<sim> Q" by(rule bisimE)
moreover have "(\<Psi> \<otimes> (p \<bullet> \<Psi>\<^sub>R)) \<otimes> (p \<bullet> \<Psi>') \<simeq> (\<Psi> \<otimes> (p \<bullet> \<Psi>')) \<otimes> (p \<bullet> \<Psi>\<^sub>R)"
by(metis Associativity Commutativity Composition Assertion_stat_eq_trans Assertion_stat_eq_sym)
ultimately have "(\<Psi> \<otimes> (p \<bullet> \<Psi>')) \<otimes> (p \<bullet> \<Psi>\<^sub>R) \<rhd> P \<sim> Q"
by(rule stat_eq_bisim)
hence "(p \<bullet> ((\<Psi> \<otimes> (p \<bullet> \<Psi>')) \<otimes> (p \<bullet> \<Psi>\<^sub>R))) \<rhd> (p \<bullet> P) \<sim> (p \<bullet> Q)"
by(rule bisim_closed)
with `distinct_perm p` `xvec \<sharp>* \<Psi>` `(p \<bullet> xvec) \<sharp>* \<Psi>` S show "(\<Psi> \<otimes> \<Psi>') \<otimes> \<Psi>\<^sub>R \<rhd> (p \<bullet> P) \<sim> (p \<bullet> Q)"
by(simp add: eqvts)
qed
with P_frR Q_frR P_r_alpha Q_r_alpha show ?case by simp
next
case(c_sym \<Psi> PR QR)
thus ?case by(blast dest: bisimE)
qed
qed
lemma bisim_par_pres:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and R :: "('a, 'b, 'c) psi"
assumes "\<Psi> \<rhd> P \<sim> Q"
shows "\<Psi> \<rhd> P \<parallel> R \<sim> Q \<parallel> R"
proof -
obtain A\<^sub>R \<Psi>\<^sub>R where "extract_frame R = \<langle>A\<^sub>R, \<Psi>\<^sub>R\<rangle>" and "A\<^sub>R \<sharp>* \<Psi>" and "A\<^sub>R \<sharp>* P" and "A\<^sub>R \<sharp>* Q"
by(rule_tac C="(\<Psi>, P, Q)" in fresh_frame) auto
moreover from `\<Psi> \<rhd> P \<sim> Q` have "\<Psi> \<otimes> \<Psi>\<^sub>R \<rhd> P \<sim> Q" by(rule bisimE)
ultimately show ?thesis by(rule_tac bisim_par_pres_aux)
qed
end
end