-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAgent.thy
1078 lines (921 loc) · 47.1 KB
/
Agent.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
theory Agent
imports Subst_Term
begin
nominal_datatype ('term, 'assertion, 'condition) psi =
Psi_nil ("\<zero>" 190)
| Output "'term::fs_name" 'term "('term, 'assertion::fs_name, 'condition::fs_name) psi" ("_\<langle>_\<rangle>._" [120, 120, 110] 110)
| Input 'term "('term, 'assertion, 'condition) input" ("_\<lparr>_" [120, 120] 110)
| Case "(('term, 'assertion, 'condition) psi_case)" ("Case _" [120] 120)
| Par "('term, 'assertion, 'condition) psi" "('term, 'assertion, 'condition) psi" (infixl "\<parallel>" 90)
| Res "\<guillemotleft>name\<guillemotright>(('term, 'assertion, 'condition) psi)" ("\<lparr>\<nu>_\<rparr>_" [120, 120] 110)
| Assert 'assertion ("\<lbrace>_\<rbrace>" [120] 120)
| Bang "('term, 'assertion, 'condition) psi" ("!_" [110] 110)
and ('term, 'assertion, 'condition) input =
Trm 'term "(('term, 'assertion, 'condition) psi)" ("\<rparr>_._" [130, 130] 130)
| Bind "\<guillemotleft>name\<guillemotright>(('term, 'assertion, 'condition) input)" ("\<nu>__" [120, 120] 120)
and ('term, 'assertion, 'condition) psi_case =
Empty_case ("\<bottom>\<^sub>c" 120)
| Cond 'condition "(('term, 'assertion, 'condition) psi)"
"(('term, 'assertion, 'condition) psi_case)" ("\<box> _ \<Rightarrow> _ _ " [120, 120, 120] 120)
lemma psi_fresh_set[simp]:
fixes X :: "name set"
and M :: "'a::fs_name"
and N :: 'a
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
and I :: "('a, 'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
and Q :: "('a, 'b, 'c) psi"
and x :: name
and \<Psi> :: 'b
and \<Phi> :: 'c
shows "X \<sharp>* (M\<langle>N\<rangle>.P) = (X \<sharp>* M \<and> X \<sharp>* N \<and> X \<sharp>* P)"
and "X \<sharp>* M\<lparr>I = (X \<sharp>* M \<and> X \<sharp>* I)"
and "X \<sharp>* Case C = X \<sharp>* C"
and "X \<sharp>* (P \<parallel> Q) = (X \<sharp>* P \<and> X \<sharp>* Q)"
and "X \<sharp>* \<lparr>\<nu>x\<rparr>P = (X \<sharp>* [x].P)"
and "X \<sharp>* \<lbrace>\<Psi>\<rbrace> = X \<sharp>* \<Psi>"
and "X \<sharp>* !P = X \<sharp>* P"
and "X \<sharp>* \<zero>"
and "X \<sharp>* Trm N P = (X \<sharp>* N \<and> X \<sharp>* P)"
and "X \<sharp>* Bind x I = X \<sharp>* ([x].I)"
and "X \<sharp>* \<bottom>\<^sub>c"
and "X \<sharp>* \<box> \<Phi> \<Rightarrow> P C = (X \<sharp>* \<Phi> \<and> X \<sharp>* P \<and> X \<sharp>* C)"
by(auto simp add: fresh_star_def psi.fresh)+
lemma psi_fresh_vec[simp]:
fixes xvec :: "name list"
shows "xvec \<sharp>* (M\<langle>N\<rangle>.P) = (xvec \<sharp>* M \<and> xvec \<sharp>* N \<and> xvec \<sharp>* P)"
and "xvec \<sharp>* M\<lparr>I = (xvec \<sharp>* M \<and> xvec \<sharp>* I)"
and "xvec \<sharp>* Case C = xvec \<sharp>* C"
and "xvec \<sharp>* (P \<parallel> Q) = (xvec \<sharp>* P \<and> xvec \<sharp>* Q)"
and "xvec \<sharp>* \<lparr>\<nu>x\<rparr>P = (xvec \<sharp>* [x].P)"
and "xvec \<sharp>* \<lbrace>\<Psi>\<rbrace> = xvec \<sharp>* \<Psi>"
and "xvec \<sharp>* !P = xvec \<sharp>* P"
and "xvec \<sharp>* \<zero>"
and "xvec \<sharp>* Trm N P = (xvec \<sharp>* N \<and> xvec \<sharp>* P)"
and "xvec \<sharp>* Bind x I = xvec \<sharp>* ([x].I)"
and "xvec \<sharp>* \<bottom>\<^sub>c"
and "xvec \<sharp>* \<box> \<Phi> \<Rightarrow> P C = (xvec \<sharp>* \<Phi> \<and> xvec \<sharp>* P \<and> xvec \<sharp>* C)"
by(auto simp add: fresh_star_def)
fun psi_cases :: "('c::fs_name \<times> ('a::fs_name, 'b::fs_name, 'c) psi) list \<Rightarrow> ('a, 'b, 'c) psi_case"
where
base: "psi_cases [] = \<bottom>\<^sub>c"
| step: "psi_cases ((\<Phi>, P)#xs) = Cond \<Phi> P (psi_cases xs)"
lemma psi_cases_eqvt[eqvt]:
fixes p :: "name prm"
and Cs :: "('c::fs_name \<times> ('a::fs_name, 'b::fs_name, 'c) psi) list"
shows "(p \<bullet> (psi_cases Cs)) = psi_cases(p \<bullet> Cs)"
by(induct Cs) auto
lemma psi_cases_fresh[simp]:
fixes x :: name
and Cs :: "('c::fs_name \<times> ('a::fs_name, 'b::fs_name, 'c) psi) list"
shows "x \<sharp> psi_cases Cs = x \<sharp> Cs"
by(induct Cs)
(auto simp add: fresh_list_nil fresh_list_cons)
lemma psi_cases_fresh_chain[simp]:
fixes xvec :: "name list"
and Cs :: "('c::fs_name \<times> ('a::fs_name, 'b::fs_name, 'c) psi) list"
and Xs :: "name set"
shows "(xvec \<sharp>* psi_cases Cs) = xvec \<sharp>* Cs"
and "(Xs \<sharp>* psi_cases Cs) = Xs \<sharp>* Cs"
by(auto simp add: fresh_star_def)
abbreviation
psi_cases_judge ("Cases _" [80] 80) where "Cases Cs \<equiv> Case(psi_cases Cs)"
fun res_chain :: "name list \<Rightarrow> ('a::fs_name, 'b::fs_name, 'c::fs_name) psi \<Rightarrow> ('a, 'b, 'c) psi"
where
res_chainbase: "res_chain [] P = P"
| res_chainstep: "res_chain (x#xs) P = \<lparr>\<nu>x\<rparr>(res_chain xs P)"
notation res_chain ("\<lparr>\<nu>*_\<rparr>_" [80, 80] 80)
lemma res_chain_eqvt[eqvt]:
fixes perm :: "name prm"
and lst :: "name list"
and P :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi"
shows "perm \<bullet> (\<lparr>\<nu>*xvec\<rparr>P) = \<lparr>\<nu>*(perm \<bullet> xvec)\<rparr>(perm \<bullet> P)"
by(induct_tac xvec, auto)
lemma res_chain_supp:
fixes xvec :: "name list"
and P :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi"
shows "supp(\<lparr>\<nu>*xvec\<rparr>P) = (supp P) - set xvec"
by(induct xvec) (auto simp add: psi.supp abs_supp)
lemma res_chain_fresh:
fixes x :: name
and xvec :: "name list"
and P :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi"
shows "x \<sharp> \<lparr>\<nu>*xvec\<rparr>P = (x \<in> set xvec \<or> x \<sharp> P)"
by (induct xvec) (simp_all add: abs_fresh)
lemma res_chain_fresh_set:
fixes Xs :: "name set"
and xvec :: "name list"
and yvec :: "name list"
and P :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi"
shows "Xs \<sharp>* (\<lparr>\<nu>*xvec\<rparr>P) = (\<forall>x\<in>Xs. x \<in> set xvec \<or> x \<sharp> P)"
and "yvec \<sharp>* (\<lparr>\<nu>*xvec\<rparr>P) = (\<forall>x\<in>(set yvec). x \<in> set xvec \<or> x \<sharp> P)"
by (simp add: fresh_star_def res_chain_fresh)+
lemma res_chain_fresh_simps[simp]:
fixes Xs :: "name set"
and xvec :: "name list"
and P :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi"
and yvec :: "name list"
shows "Xs \<sharp>* xvec \<Longrightarrow> Xs \<sharp>* (\<lparr>\<nu>*xvec\<rparr>P) = (Xs \<sharp>* P)"
and "yvec \<sharp>* xvec \<Longrightarrow> yvec \<sharp>* (\<lparr>\<nu>*xvec\<rparr>P) = (yvec \<sharp>* P)"
and "xvec \<sharp>* (\<lparr>\<nu>*xvec\<rparr>P)"
apply(simp add: res_chain_fresh_set) apply(force simp add: fresh_star_def name_list_supp fresh_def)
apply(simp add: res_chain_fresh_set) apply(force simp add: fresh_star_def name_list_supp fresh_def)
by(simp add: res_chain_fresh_set)
lemma res_chain_alpha:
fixes p :: "name prm"
and xvec :: "name list"
and P :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi"
assumes xvec_freshP: "(p \<bullet> xvec) \<sharp>* P"
and S: "set p \<subseteq> set xvec \<times> set (p \<bullet> xvec)"
shows "\<lparr>\<nu>*xvec\<rparr>P = \<lparr>\<nu>*(p \<bullet> xvec)\<rparr>(p \<bullet> P)"
proof -
note pt_name_inst at_name_inst S
moreover have "set xvec \<sharp>* (\<lparr>\<nu>*xvec\<rparr>P)"
by (simp add: res_chain_fresh_set)
moreover from xvec_freshP have "set (p \<bullet> xvec) \<sharp>* (\<lparr>\<nu>*xvec\<rparr>P)"
by (simp add: res_chain_fresh_set) (simp add: fresh_star_def)
ultimately have "\<lparr>\<nu>*xvec\<rparr>P = p \<bullet> (\<lparr>\<nu>*xvec\<rparr>P)"
by (rule_tac pt_freshs_freshs [symmetric])
then show ?thesis by(simp add: eqvts)
qed
lemma res_chain_append:
fixes xvec :: "name list"
and yvec :: "name list"
and P :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi"
shows "\<lparr>\<nu>*(xvec@yvec)\<rparr>P = \<lparr>\<nu>*xvec\<rparr>(\<lparr>\<nu>*yvec\<rparr>P)"
by(induct xvec) auto
lemma res_chain_simps[dest]:
fixes xvec :: "name list"
and P :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi"
and Q :: "('a, 'b, 'c) psi"
and P' :: "('a, 'b, 'c) psi"
and Q' :: "('a, 'b, 'c) psi"
shows "((\<lparr>\<nu>*xvec\<rparr>(P \<parallel> Q)) = P' \<parallel> Q') \<Longrightarrow> (P = P' \<and> Q = Q')"
and "(P \<parallel> Q = \<lparr>\<nu>*xvec\<rparr>(P' \<parallel> Q')) \<Longrightarrow> (P = P' \<and> Q = Q')"
by(case_tac xvec, simp_all add: psi.inject)+
fun input_chain :: "name list \<Rightarrow> 'a::fs_name \<Rightarrow> ('a, 'b::fs_name, 'c::fs_name) psi \<Rightarrow> ('a, 'b, 'c) input"
where
input_chainbase: "input_chain [] N P = \<rparr>(N).P"
| input_chainstep: "input_chain (x#xs) N P = \<nu> x (input_chain xs N P)"
abbreviation
input_chain_judge ("_\<lparr>\<lambda>*_ _\<rparr>._" [80, 80, 80, 80] 80) where "M\<lparr>\<lambda>*xvec N\<rparr>.P \<equiv> M\<lparr>(input_chain xvec N P)"
lemma input_chain_eqvt[eqvt]:
fixes p :: "name prm"
and xvec :: "name list"
and N :: "'a::fs_name"
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
shows "p \<bullet> (input_chain xvec N P) = input_chain (p \<bullet> xvec) (p \<bullet> N) (p \<bullet> P)"
by(induct_tac xvec) auto
lemma input_chain_fresh:
fixes x :: name
and xvec :: "name list"
and N :: "'a::fs_name"
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
shows "x \<sharp> (input_chain xvec N P) = (x \<in> set xvec \<or> (x \<sharp> N \<and> x \<sharp> P))"
by (induct xvec) (simp_all add: abs_fresh)
lemma induct_chain_simps[simp]:
fixes xvec :: "name list"
and N :: "'a::fs_name"
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
shows "xvec \<sharp>* (input_chain xvec N P)"
by(induct xvec) (auto simp add: abs_fresh abs_fresh_star fresh_star_def)
lemma input_chain_fresh_set:
fixes Xs :: "name set"
and xvec :: "name list"
and N :: "'a::fs_name"
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
shows "Xs \<sharp>* (input_chain xvec N P) = (\<forall>x\<in>Xs. x \<in> set xvec \<or> (x \<sharp> N \<and> x \<sharp> P))"
by (simp add: fresh_star_def input_chain_fresh)
lemma input_chain_alpha:
fixes p :: "name prm"
and Xs :: "name set"
and Ys :: "name set"
assumes Xs_freshP: "Xs \<sharp>* (input_chain xvec N P)"
and Ys_freshN: "Ys \<sharp>* N"
and Ys_freshP: "Ys \<sharp>* P"
and S: "set p \<subseteq> Xs \<times> Ys"
shows "(input_chain xvec N P) = (input_chain (p \<bullet> xvec) (p \<bullet> N) (p \<bullet> P))"
proof -
note pt_name_inst at_name_inst Xs_freshP S
moreover from Ys_freshN Ys_freshP have "Ys \<sharp>* (input_chain xvec N P)"
by (simp add: input_chain_fresh_set) (simp add: fresh_star_def)
ultimately have "(input_chain xvec N P) = p \<bullet> (input_chain xvec N P)"
by (rule_tac pt_freshs_freshs [symmetric])
then show ?thesis by(simp add: eqvts)
qed
lemma input_chain_alpha':
fixes p :: "name prm"
and xvec :: "name list"
and N :: "'a::fs_name"
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
assumes xvec_freshP: "(p \<bullet> xvec) \<sharp>* P"
and xvec_freshN: "(p \<bullet> xvec) \<sharp>* N"
and S: "set p \<subseteq> set xvec \<times> set (p \<bullet> xvec)"
shows "(input_chain xvec N P) = (input_chain (p \<bullet> xvec) (p \<bullet> N) (p \<bullet> P))"
proof -
note pt_name_inst at_name_inst S
moreover have "set xvec \<sharp>* (input_chain xvec N P)"
by (simp add: input_chain_fresh_set)
ultimately show ?thesis using xvec_freshN xvec_freshP
by(rule_tac input_chain_alpha) (simp add: fresh_star_def)+
qed
lemma alpha_res:
fixes M :: "'a::fs_name"
and x :: name
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
and y :: name
assumes y_freshP: "y \<sharp> P"
shows "\<lparr>\<nu>x\<rparr>P = \<lparr>\<nu>y\<rparr>([(x, y)] \<bullet> P)"
proof(cases "x = y")
assume "x=y"
thus ?thesis by simp
next
assume "x \<noteq> y"
with y_freshP show ?thesis
by(perm_simp add: psi.inject alpha calc_atm fresh_left)
qed
lemma alpha_input:
fixes x :: name
and I :: "('a::fs_name, 'b::fs_name, 'c::fs_name) input"
and c :: name
assumes A1: "c \<sharp> I"
shows "\<nu> x I = \<nu> c([(x, c)] \<bullet> I)"
proof(cases "x = c")
assume "x=c"
thus ?thesis by simp
next
assume "x \<noteq> c"
with A1 show ?thesis
by(perm_simp add: input.inject alpha calc_atm fresh_left)
qed
lemma input_chain_length_eq:
fixes xvec :: "name list"
and yvec :: "name list"
and M :: "'a::fs_name"
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
assumes "length xvec = length yvec"
and "xvec \<sharp>* yvec"
and "distinct yvec"
and "yvec \<sharp>* M"
and "yvec \<sharp>* P"
obtains N Q where "input_chain xvec M P = input_chain yvec N Q"
proof -
assume "\<And>N Q. input_chain xvec M P = input_chain yvec N Q \<Longrightarrow> thesis"
moreover obtain n where "n = length xvec" by auto
with assms have "\<exists>N Q. input_chain xvec M P = input_chain yvec N Q"
proof(induct n arbitrary: xvec yvec M P)
case 0
thus ?case by auto
next
case(Suc n xvec yvec M P)
from `Suc n = length xvec`
obtain x xvec' where "xvec = x#xvec'" and "length xvec' = n"
by(case_tac xvec) auto
with `length xvec = length yvec`
obtain y yvec' where "yvec = y#yvec'" by(case_tac yvec) auto
from `yvec = y#yvec'` `xvec=x#xvec'` `xvec \<sharp>* yvec` `distinct yvec` `length xvec = length yvec` `yvec \<sharp>* M` `yvec \<sharp>* P`
have "length xvec' = length yvec'" and "xvec' \<sharp>* yvec'" and "distinct yvec'" and "yvec' \<sharp>* M" and "yvec' \<sharp>* P"
by simp+
then obtain N Q where Eq: "input_chain xvec' M P = input_chain yvec' N Q" using `length xvec' = n`
by(drule_tac Suc) auto
moreover from `distinct yvec` `yvec = y#yvec'` have "y \<sharp> yvec'" by auto
moreover from `xvec \<sharp>* yvec` `xvec = x#xvec'` `yvec=y#yvec'` have "x \<noteq> y" and "x \<sharp> yvec'"
by auto
moreover from `yvec \<sharp>* M` `yvec \<sharp>* P` `yvec = y#yvec'` have "y \<sharp> M" and "y \<sharp> P" by auto
hence "y \<sharp> input_chain xvec' M P" by(simp add: input_chain_fresh)
with Eq have "y \<sharp> input_chain yvec' N Q" by(simp add: input_chain_fresh)
ultimately have "\<nu> x (input_chain xvec' M P) = \<nu> y (input_chain yvec' ([(x, y)] \<bullet> N) ([(x, y)] \<bullet> Q))"
by(simp add: input.inject alpha' eqvts name_swap)
thus ?case using `xvec = x#xvec'` `yvec=y#yvec'` by force
qed
ultimately show ?thesis
by blast
qed
lemma input_chain_eq:
fixes xvec :: "name list"
and M :: "'a::fs_name"
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
and yvec :: "name list"
and N :: 'a
and Q :: "('a, 'b, 'c) psi"
assumes "input_chain xvec M P = input_chain yvec N Q"
and "xvec \<sharp>* yvec"
and "distinct xvec"
and "distinct yvec"
obtains p where "(set p) \<subseteq> (set xvec) \<times> set (p \<bullet> xvec)" and "distinct_perm p" and "yvec = p \<bullet> xvec" and "N = p \<bullet> M" and "Q = p \<bullet> P"
proof -
assume "\<And>p. \<lbrakk>set p \<subseteq> set xvec \<times> set (p \<bullet> xvec); distinct_perm p; yvec = p \<bullet> xvec; N = p \<bullet> M; Q = p \<bullet> P\<rbrakk> \<Longrightarrow> thesis"
moreover obtain n where "n = length xvec" by auto
with assms have "\<exists>p. (set p) \<subseteq> (set xvec) \<times> set (yvec) \<and> distinct_perm p \<and> yvec = p \<bullet> xvec \<and> N = p \<bullet> M \<and> Q = p \<bullet> P"
proof(induct n arbitrary: xvec yvec M N P Q)
case(0 xvec yvec M N P Q)
have Eq: "input_chain xvec M P = input_chain yvec N Q" by fact
from `0 = length xvec` have "xvec = []" by auto
moreover with Eq have "yvec = []"
by(case_tac yvec) auto
ultimately show ?case using Eq
by(simp add: input.inject)
next
case(Suc n xvec yvec M N P Q)
from `Suc n = length xvec`
obtain x xvec' where "xvec = x#xvec'" and "length xvec' = n"
by(case_tac xvec) auto
from `input_chain xvec M P = input_chain yvec N Q` `xvec = x # xvec'`
obtain y yvec' where "input_chain (x#xvec') M P = input_chain (y#yvec') N Q"
and "yvec = y#yvec'"
by(case_tac yvec) auto
hence EQ: "\<nu> x (input_chain xvec' M P) = \<nu> y (input_chain yvec' N Q)"
by simp
from `xvec = x#xvec'` `yvec=y#yvec'` `xvec \<sharp>* yvec`
have "x \<noteq> y" and "xvec' \<sharp>* yvec'" and "x \<sharp> yvec'" and "y \<sharp> xvec'"
by(auto simp add: fresh_list_cons)
from `distinct xvec` `distinct yvec` `xvec=x#xvec'` `yvec=y#yvec'` have "x \<sharp> xvec'" and "y \<sharp> yvec'" and "distinct xvec'" and "distinct yvec'"
by simp+
have IH: "\<And>xvec yvec M N P Q. \<lbrakk>input_chain xvec (M::'a) (P::('a, 'b, 'c) psi) = input_chain yvec (N::'a) (Q::('a, 'b, 'c) psi); xvec \<sharp>* yvec; distinct xvec; distinct yvec; n = length xvec\<rbrakk> \<Longrightarrow> \<exists>p. (set p) \<subseteq> (set xvec) \<times> (set yvec) \<and> distinct_perm p \<and> yvec = p \<bullet> xvec \<and> N = p \<bullet> M \<and> Q = p \<bullet> P"
by fact
from EQ `x \<noteq> y` `x \<sharp> yvec'` `y \<sharp> yvec'` have "input_chain xvec' M P = input_chain yvec' ([(x, y)] \<bullet> N) ([(x, y)] \<bullet> Q)"
by(simp add: input.inject alpha eqvts)
with `xvec' \<sharp>* yvec'` `distinct xvec'` `distinct yvec'` `length xvec' = n` IH
obtain p where S: "(set p) \<subseteq> (set xvec') \<times> (set yvec')" and "distinct_perm p" and "yvec' = p \<bullet> xvec'" and "([(x, y)] \<bullet> N) = p \<bullet> M" and "([(x, y)] \<bullet> Q) = p \<bullet> P"
by metis
from S have "set((x, y)#p) \<subseteq> set(x#xvec') \<times> set(y#yvec')" by auto
moreover from `x \<sharp> xvec'` `x \<sharp> yvec'` `y \<sharp> xvec'` `y \<sharp> yvec'` S have "x \<sharp> p" and "y \<sharp> p"
apply(induct p)
by(auto simp add: fresh_list_nil fresh_list_cons fresh_prod name_list_supp) (auto simp add: fresh_def)
with S `distinct_perm p` `x \<noteq> y` have "distinct_perm((x, y)#p)" by auto
moreover from `yvec' = p \<bullet> xvec'` `x \<sharp> p` `y \<sharp> p` `x \<sharp> xvec'` `y \<sharp> xvec'` have "(y#yvec') = ((x, y)#p) \<bullet> (x#xvec')"
by(simp add: calc_atm fresh_chain_simps)
moreover from `([(x, y)] \<bullet> N) = p \<bullet> M` have "([(x, y)] \<bullet> [(x, y)] \<bullet> N) = [(x, y)] \<bullet> p \<bullet> M"
by(simp add: pt_bij)
hence "N = ((x, y)#p) \<bullet> M" by simp
moreover from `([(x, y)] \<bullet> Q) = p \<bullet> P` have "([(x, y)] \<bullet> [(x, y)] \<bullet> Q) = [(x, y)] \<bullet> p \<bullet> P"
by(simp add: pt_bij)
hence "Q = ((x, y)#p) \<bullet> P" by simp
ultimately show ?case using `xvec=x#xvec'` `yvec=y#yvec'`
by blast
qed
ultimately show ?thesis by blast
qed
lemma input_chain_eq_length:
fixes xvec :: "name list"
and M :: "'a::fs_name"
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
and yvec :: "name list"
and N :: 'a
and Q :: "('a, 'b, 'c) psi"
assumes "input_chain xvec M P = input_chain yvec N Q"
shows "length xvec = length yvec"
proof -
obtain n where "n = length xvec" by auto
with assms show ?thesis
proof(induct n arbitrary: xvec yvec M P N Q)
case(0 xvec yvec M P N Q)
from `0 = length xvec` have "xvec = []" by auto
moreover with `input_chain xvec M P = input_chain yvec N Q` have "yvec = []"
by(case_tac yvec) auto
ultimately show ?case by simp
next
case(Suc n xvec yvec M P N Q)
from `Suc n = length xvec`
obtain x xvec' where "xvec = x#xvec'" and "length xvec' = n"
by(case_tac xvec) auto
from `input_chain xvec M P = input_chain yvec N Q` `xvec = x # xvec'`
obtain y yvec' where "input_chain (x#xvec') M P = input_chain (y#yvec') N Q"
and "yvec = y#yvec'"
by(case_tac yvec) auto
hence EQ: "\<nu> x (input_chain xvec' M P) = \<nu> y (input_chain yvec' N Q)"
by simp
have IH: "\<And>xvec yvec M P N Q. \<lbrakk>input_chain xvec (M::'a) (P::('a, 'b, 'c) psi) = input_chain yvec N Q; n = length xvec\<rbrakk> \<Longrightarrow> length xvec = length yvec"
by fact
show ?case
proof(case_tac "x = y")
assume "x = y"
with EQ have "input_chain xvec' M P = input_chain yvec' N Q"
by(simp add: alpha input.inject)
with IH `length xvec' = n` have "length xvec' = length yvec'"
by blast
with `xvec = x#xvec'` `yvec=y#yvec'`
show ?case by simp
next
assume "x \<noteq> y"
with EQ have "input_chain xvec' M P = input_chain ([(x, y)] \<bullet> yvec') ([(x, y)] \<bullet> N) ([(x, y)] \<bullet> Q)"
by(simp add: alpha input.inject eqvts)
with IH `length xvec' = n` have "length xvec' = length ([(x, y)] \<bullet> yvec')"
by blast
hence "length xvec' = length yvec'"
by simp
with `xvec = x#xvec'` `yvec=y#yvec'`
show ?case by simp
qed
qed
qed
lemma alpha_input_chain:
fixes yvec :: "name list"
and xvec :: "name list"
and M :: "'a::fs_name"
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
assumes "length xvec = length yvec"
and "yvec \<sharp>* M"
and "yvec \<sharp>* P"
and "yvec \<sharp>* xvec"
and "distinct yvec"
shows "input_chain xvec M P = input_chain yvec ([xvec yvec] \<bullet>\<^sub>v M) ([xvec yvec] \<bullet>\<^sub>v P)"
using assms
proof(induct rule: compose_perm_induct)
case c_base
show ?case by simp
next
case(c_step x xvec y yvec)
thus ?case
apply auto
by(subst alpha_input[of y]) (auto simp add: input_chain_fresh eqvts)
qed
lemma input_chain_inject[simp]:
shows "(input_chain xvec M P = input_chain xvec N Q) = ((M = N) \<and> (P = Q))"
by(induct xvec) (auto simp add: input.inject alpha)
lemma alpha_input_distinct:
fixes xvec :: "name list"
and M :: "'a::fs_name"
and P :: "('a, 'b::fs_name, 'c::fs_name) psi"
and yvec :: "name list"
and N :: 'a
and Q :: "('a, 'b, 'c) psi"
assumes Eq: "input_chain xvec M P = input_chain yvec N Q"
and xvec_dist: "distinct xvec"
and Mem: "\<And>x. x \<in> set xvec \<Longrightarrow> x \<in> supp M"
and xvec_freshyvec: "xvec \<sharp>* yvec"
and xvec_freshN: "xvec \<sharp>* N"
and xvec_freshQ: "xvec \<sharp>* Q"
shows "distinct yvec"
proof -
from Eq have "length xvec = length yvec"
by(rule input_chain_eq_length)
with assms show ?thesis
proof(induct n=="length xvec" arbitrary: xvec yvec N Q rule: nat.induct)
case(zero xvec yvec N Q)
thus ?case by simp
next
case(Suc n xvec yvec N Q)
have L: "length xvec = length yvec" and "Suc n = length xvec" by fact+
then obtain x xvec' y yvec' where x_eq: "xvec = x#xvec'" and y_eq: "yvec = y#yvec'"
and L': "length xvec' = length yvec'"
by(cases xvec, auto, cases yvec, auto)
have xvec_freshyvec: "xvec \<sharp>* yvec" and xvec_dist: "distinct xvec" by fact+
with x_eq y_eq have xineqy: "x \<noteq> y" and xvec'_freshyvec': "xvec' \<sharp>* yvec'"
and xvec'_dist: "distinct xvec'" and x_freshxvec': "x \<sharp> xvec'"
and x_freshyvec': "x \<sharp> yvec'" and y_freshxvec': "y \<sharp> xvec'"
by(auto simp add: fresh_list_cons)
have Eq: "input_chain xvec M P = input_chain yvec N Q" by fact
with x_eq y_eq xineqy have Eq': "input_chain xvec' M P = input_chain ([(x, y)] \<bullet> yvec') ([(x, y)] \<bullet> N) ([(x, y)] \<bullet> Q)"
by(simp add: input.inject alpha eqvts)
moreover have Mem:"\<And>x. x \<in> set xvec \<Longrightarrow> x \<in> supp M" by fact
with x_eq have "\<And>x. x \<in> set xvec' \<Longrightarrow> x \<in> supp M" by simp
moreover have xvec_freshN: "xvec \<sharp>* N" by fact
with x_eq x_freshxvec' y_freshxvec' have "xvec' \<sharp>* ([(x, y)] \<bullet> N)" by simp
moreover have xvec_freshQ: "xvec \<sharp>* Q" by fact
with x_eq x_freshxvec' y_freshxvec' have "xvec' \<sharp>* ([(x, y)] \<bullet> Q)" by simp
moreover have "Suc n = length xvec" by fact
with x_eq have "n = length xvec'" by simp
moreover from xvec'_freshyvec' x_freshxvec' y_freshxvec' have "xvec' \<sharp>* ([(x, y)] \<bullet> yvec')"
by simp
moreover from L' have "length xvec' = length([(x, y)] \<bullet> yvec')" by simp
moreover have "\<And>xvec yvec N Q.
\<lbrakk>n = length xvec; input_chain xvec (M::'a) (P::('a, 'b, 'c) psi) = input_chain yvec N Q; distinct xvec; \<And>x. x \<in> set xvec \<Longrightarrow> x \<in> supp M; xvec \<sharp>* yvec;
xvec \<sharp>* N; xvec \<sharp>* Q; length xvec = length yvec\<rbrakk>
\<Longrightarrow> distinct yvec" by fact
ultimately have "distinct([(x, y)] \<bullet> yvec')" using xvec'_dist
by blast
hence "distinct yvec'" by simp
from Mem x_eq have x_suppM: "x \<in> supp M" by simp
from L xvec_freshyvec xvec_dist xvec_freshN xvec_freshQ
have "input_chain yvec N Q = input_chain xvec ([yvec xvec] \<bullet>\<^sub>v N) ([yvec xvec] \<bullet>\<^sub>v Q)"
by(simp add: alpha_input_chain)
with Eq have "M = [yvec xvec] \<bullet>\<^sub>v N" by auto
with x_eq y_eq have "M = [(y, x)] \<bullet> [yvec' xvec'] \<bullet>\<^sub>v N"
by simp
with x_suppM have y_suppN: "y \<in> supp([yvec' xvec'] \<bullet>\<^sub>v N)"
by(drule_tac pi="[(x, y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
(simp add: calc_atm eqvts name_swap)
have "y \<sharp> yvec'"
proof(simp add: fresh_def, rule notI)
assume "y \<in> supp yvec'"
hence "y mem yvec'"
by(induct yvec') (auto simp add: supp_list_nil supp_list_cons supp_atm)
moreover from xvec_freshN x_eq x_freshxvec' have "xvec' \<sharp>* N" by simp
ultimately have "y \<sharp> [yvec' xvec'] \<bullet>\<^sub>v N" using L' xvec'_freshyvec' xvec'_dist
by(force intro: fresh_chain_perm simp add: fresh_chain_sym)
with y_suppN show "False" by(simp add: fresh_def)
qed
with `distinct yvec'` y_eq show ?case by simp
qed
qed
lemma psi_cases_inject[simp]:
fixes CsP :: "('c::fs_name \<times> ('a::fs_name, 'b::fs_name, 'c) psi) list"
and CsQ :: "('c \<times> ('a, 'b, 'c) psi) list"
shows "(psi_cases CsP = psi_cases CsQ) = (CsP = CsQ)"
proof(induct CsP arbitrary: CsQ)
case(Nil CsQ)
thus ?case by(case_tac CsQ) (auto)
next
case(Cons a CsP CsQ)
thus ?case
by(case_tac a, case_tac CsQ) (clarsimp simp add: psi_case.inject)+
qed
lemma cases_inject[simp]:
fixes CsP :: "('c::fs_name \<times> ('a::fs_name, 'b::fs_name, 'c) psi) list"
and CsQ :: "('c \<times> ('a, 'b, 'c) psi) list"
shows "(Cases CsP = Cases CsQ) = (CsP = CsQ)"
apply(induct CsP)
apply(auto simp add: psi_case.inject)
apply(case_tac CsQ)
apply(simp add: psi_case.inject psi.inject)
apply(force simp add: psi_case.inject psi.inject)
apply(case_tac CsQ)
apply(force simp add: psi_case.inject psi.inject)
apply(auto simp add: psi_case.inject psi.inject)
apply(simp only: psi_cases.simps[symmetric])
apply(simp only: psi_cases_inject)
apply simp
apply(case_tac CsQ)
by(auto simp add: psi_case.inject psi.inject)
nominal_primrec
guarded :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi \<Rightarrow> bool"
and guarded' :: "('a::fs_name, 'b::fs_name, 'c::fs_name) input \<Rightarrow> bool"
and guarded'' :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi_case \<Rightarrow> bool"
where
"guarded (\<zero>) = True"
| "guarded (M\<langle>N\<rangle>.P) = True"
| "guarded (M\<lparr>I) = True"
| "guarded (Case C) = guarded'' C"
| "guarded (P \<parallel> Q) = ((guarded P) \<and> (guarded Q))"
| "guarded (\<lparr>\<nu>x\<rparr>P) = (guarded P)"
| "guarded (\<lbrace>\<Psi>\<rbrace>) = False"
| "guarded (!P) = guarded P"
| "guarded' (Trm M P) = False"
| "guarded' (\<nu> y I) = False"
| "guarded'' (\<bottom>\<^sub>c) = True"
| "guarded'' (\<box>\<phi> \<Rightarrow> P C) = (guarded P \<and> guarded'' C)"
apply(finite_guess)+
apply(rule TrueI)+
by(fresh_guess add: fresh_bool)+
lemma guarded_eqvt[eqvt]:
fixes p :: "name prm"
and P :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi"
and I :: "('a, 'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
shows "(p \<bullet> (guarded P)) = guarded (p \<bullet> P)"
and "(p \<bullet> (guarded' I)) = guarded' (p \<bullet> I)"
and "(p \<bullet> (guarded'' C)) = guarded'' (p \<bullet> C)"
by(nominal_induct P and I and C rule: psi_input_psi_case.strong_inducts)
(simp add: eqvts)+
lemma guarded_closed[simp]:
fixes P :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi"
and p :: "name prm"
assumes "guarded P"
shows "guarded(p \<bullet> P)"
proof -
from `guarded P` have "p \<bullet> (guarded P)"
by(simp add: perm_bool)
thus ?thesis by(simp add: eqvts)
qed
locale subst_psi =
subst_term: strong_subst_type subst_term +
subst_assert: subst_type subst_assert +
subst_cond: subst_type subst_cond
for subst_term :: "('a::fs_name) \<Rightarrow> name list \<Rightarrow> 'a::fs_name list \<Rightarrow> 'a"
and subst_assert :: "('b::fs_name) \<Rightarrow> name list \<Rightarrow> 'a::fs_name list \<Rightarrow> 'b"
and subst_cond :: "('c::fs_name) \<Rightarrow> name list \<Rightarrow> 'a::fs_name list \<Rightarrow> 'c"
begin
nominal_primrec
subs :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi \<Rightarrow> name list \<Rightarrow> 'a list \<Rightarrow> ('a, 'b, 'c) psi"
and subs' :: "('a::fs_name, 'b::fs_name, 'c::fs_name) input \<Rightarrow> name list \<Rightarrow> 'a list \<Rightarrow> ('a, 'b, 'c) input"
and subs'' :: "('a::fs_name, 'b::fs_name, 'c::fs_name) psi_case \<Rightarrow> name list \<Rightarrow> 'a list \<Rightarrow> ('a, 'b, 'c) psi_case"
where
"subs (\<zero>) xvec Tvec = \<zero>"
| "(subs (M\<langle>N\<rangle>.P) xvec Tvec) = (subst_term M xvec Tvec)\<langle>(subst_term N xvec Tvec)\<rangle>.(subs P xvec Tvec)"
| "(subs (M\<lparr>I) xvec Tvec) = (subst_term M xvec Tvec)\<lparr>(subs' I xvec Tvec)"
| "(subs (Case C) xvec Tvec) = (Case (subs'' C xvec Tvec))"
| "(subs (P \<parallel> Q) xvec Tvec) = (subs P xvec Tvec) \<parallel> (subs Q xvec Tvec)"
| "\<lbrakk>y \<sharp> xvec; y \<sharp> Tvec\<rbrakk> \<Longrightarrow> (subs (\<lparr>\<nu>y\<rparr>P) xvec Tvec) = \<lparr>\<nu>y\<rparr>(subs P xvec Tvec)"
| "(subs (\<lbrace>\<Psi>\<rbrace>) xvec Tvec) = \<lbrace>(subst_assert \<Psi> xvec Tvec)\<rbrace>"
| "(subs (!P) xvec Tvec) = !(subs P xvec Tvec)"
| "(subs' ((Trm M P)::('a::fs_name, 'b::fs_name, 'c::fs_name) input) xvec Tvec) = (\<rparr>(subst_term M xvec Tvec).(subs P xvec Tvec))"
| "\<lbrakk>y \<sharp> xvec; y \<sharp> Tvec\<rbrakk> \<Longrightarrow> (subs' (\<nu> y I) xvec Tvec) = (\<nu> y (subs' I xvec Tvec))"
| "(subs'' (\<bottom>\<^sub>c::('a::fs_name, 'b::fs_name, 'c::fs_name) psi_case) xvec Tvec) = \<bottom>\<^sub>c"
| "(subs'' (\<box>\<Phi> \<Rightarrow> P C) xvec Tvec) = (\<box>(subst_cond \<Phi> xvec Tvec) \<Rightarrow> (subs P xvec Tvec) (subs'' C xvec Tvec))"
apply(finite_guess add: subst_term.fs subst_assert.fs subst_cond.fs)+
apply(rule TrueI)+
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(rule supports_fresh[of "supp(xvec, Tvec)"])
apply(force simp add: perm_fun_def eqvts fresh_def[symmetric] supports_def)
apply(simp add: fs_name1)
apply(simp add: fresh_def[symmetric])
apply(rule supports_fresh[of "supp(xvec, Tvec)"])
apply(force simp add: perm_fun_def eqvts fresh_def[symmetric] supports_def)
apply(simp add: fs_name1)
apply(simp add: fresh_def[symmetric])
apply(fresh_guess)+
apply(rule supports_fresh[of "supp(xvec, Tvec)"])
apply(force simp add: perm_fun_def eqvts fresh_def[symmetric] supports_def)
apply(simp add: fs_name1)
apply(simp add: fresh_def[symmetric])
apply(fresh_guess)+
apply(rule supports_fresh[of "supp(xvec, Tvec)"])
apply(force simp add: perm_fun_def eqvts fresh_def[symmetric] supports_def)
apply(simp add: fs_name1)
apply(simp add: fresh_def[symmetric])
apply(fresh_guess)+
apply(rule supports_fresh[of "supp(xvec, Tvec)"])
apply(force simp add: perm_fun_def eqvts fresh_def[symmetric] supports_def)
apply(simp add: fs_name1)
apply(simp add: fresh_def[symmetric])
apply(fresh_guess)
apply(rule supports_fresh[of "supp(xvec, Tvec)"])
apply(force simp add: perm_fun_def eqvts fresh_def[symmetric] supports_def)
apply(simp add: fs_name1)
apply(simp add: fresh_def[symmetric])
apply(rule supports_fresh[of "supp(xvec, Tvec)"])
apply(force simp add: perm_fun_def eqvts fresh_def[symmetric] supports_def)
apply(simp add: fs_name1)
apply(simp add: fresh_def[symmetric])
apply(fresh_guess)+
apply(rule supports_fresh[of "supp(xvec, Tvec)"])
apply(force simp add: perm_fun_def eqvts fresh_def[symmetric] supports_def)
apply(simp add: fs_name1)
apply(simp add: fresh_def[symmetric])
apply(fresh_guess)+
apply(rule supports_fresh[of "supp(xvec, Tvec)"])
apply(force simp add: perm_fun_def eqvts fresh_def[symmetric] supports_def)
apply(simp add: fs_name1)
apply(simp add: fresh_def[symmetric])
apply(fresh_guess)+
apply(rule supports_fresh[of "supp(xvec, Tvec)"])
apply(force simp add: perm_fun_def eqvts fresh_def[symmetric] supports_def)
apply(simp add: fs_name1)
apply(simp add: fresh_def[symmetric])
done
lemma subst_eqvt[eqvt]:
fixes p :: "name prm"
and P :: "('a, 'b, 'c) psi"
and xvec :: "name list"
and Tvec :: "'a list"
and I :: "('a, 'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
shows "(p \<bullet> (subs P xvec Tvec)) = subs (p \<bullet> P) (p \<bullet> xvec) (p \<bullet> Tvec)"
and "(p \<bullet> (subs' I xvec Tvec)) = subs' (p \<bullet> I) (p \<bullet> xvec) (p \<bullet> Tvec)"
and "(p \<bullet> (subs'' C xvec Tvec)) = subs'' (p \<bullet> C) (p \<bullet> xvec) (p \<bullet> Tvec)"
apply(nominal_induct P and I and C avoiding: xvec Tvec rule: psi_input_psi_case.strong_inducts)
apply(auto simp add: eqvts)
apply(drule_tac pi=p in pt_fresh_bij1[OF pt_name_inst, OF at_name_inst])
apply(drule_tac pi=p in pt_fresh_bij1[OF pt_name_inst, OF at_name_inst])
apply simp
apply(drule_tac pi=p in pt_fresh_bij1[OF pt_name_inst, OF at_name_inst])
apply(drule_tac pi=p in pt_fresh_bij1[OF pt_name_inst, OF at_name_inst])
by simp
(*
lemma subst1:
fixes xvec :: "name list"
and Tvec :: "'a list"
and x :: name
and P :: "('a, 'b, 'c) psi"
and I :: "('a, 'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
assumes "length xvec = length Tvec"
and "distinct xvec"
and "x \<sharp> xvec"
shows "x \<sharp> (subs P xvec Tvec) \<Longrightarrow> x \<sharp> P"
and "x \<sharp> (subs' I xvec Tvec) \<Longrightarrow> x \<sharp> I"
and "x \<sharp> (subs'' C xvec Tvec) \<Longrightarrow> x \<sharp> C"
using assms
by(nominal_induct P and I and C avoiding: xvec Tvec rule: psi_input_psi_case.strong_inducts)
(auto intro: subst_term.subst1 subst_cond.subst1 subst_assert.subst1 simp add: abs_fresh)
lemma subst1_chain:
fixes xvec :: "name list"
and Tvec :: "'a list"
and Xs :: "name set"
and P :: "('a, 'b, 'c) psi"
and I :: "('a, 'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
assumes "length xvec = length Tvec"
and "distinct xvec"
and "Xs \<sharp>* xvec"
shows "Xs \<sharp>* (subs P xvec Tvec) \<Longrightarrow> Xs \<sharp>* P"
and "Xs \<sharp>* (subs' I xvec Tvec) \<Longrightarrow> Xs \<sharp>* I"
and "Xs \<sharp>* (subs'' C xvec Tvec) \<Longrightarrow> Xs \<sharp>* C"
using assms
by(auto intro: subst1 simp add: fresh_star_def)
*)
lemma subst2[intro]:
fixes xvec :: "name list"
and Tvec :: "'a list"
and x :: name
and P :: "('a, 'b, 'c) psi"
and I :: "('a, 'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
assumes "x \<sharp> Tvec"
and "x \<sharp> xvec"
shows "x \<sharp> P \<Longrightarrow> x \<sharp> (subs P xvec Tvec)"
and "x \<sharp> I \<Longrightarrow> x \<sharp> (subs' I xvec Tvec)"
and "x \<sharp> C \<Longrightarrow> x \<sharp> (subs'' C xvec Tvec)"
using assms
by(nominal_induct P and I and C avoiding: xvec Tvec rule: psi_input_psi_case.strong_inducts)
(auto intro: subst_term.subst2 subst_cond.subst2 subst_assert.subst2 simp add: abs_fresh)
lemma subst2_chain[intro]:
fixes xvec :: "name list"
and Tvec :: "'a list"
and Xs :: "name set"
and P :: "('a, 'b, 'c) psi"
and I :: "('a, 'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
assumes "Xs \<sharp>* xvec"
and "Xs \<sharp>* Tvec"
shows "Xs \<sharp>* P \<Longrightarrow> Xs \<sharp>* (subs P xvec Tvec)"
and "Xs \<sharp>* I \<Longrightarrow> Xs \<sharp>* (subs' I xvec Tvec)"
and "Xs \<sharp>* C \<Longrightarrow> Xs \<sharp>* (subs'' C xvec Tvec)"
using assms
by(auto intro: subst2 simp add: fresh_star_def)
(*
lemma subst4:
fixes xvec :: "name list"
and Tvec :: "'a list"
and P :: "('a, 'b, 'c) psi"
and I :: "('a ,'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
assumes "length xvec = length Tvec"
and "distinct xvec"
shows "\<lbrakk>xvec \<sharp>* P\<rbrakk> \<Longrightarrow> (subs P xvec Tvec) = P"
and "\<lbrakk>xvec \<sharp>* I\<rbrakk> \<Longrightarrow> (subs' I xvec Tvec) = I"
and "\<lbrakk>xvec \<sharp>* C\<rbrakk> \<Longrightarrow> (subs'' C xvec Tvec) = C"
using assms
by(nominal_induct P and I and C avoiding: xvec Tvec rule: psi_input_psi_case.strong_inducts)
(auto intro: subst_term.subst4 subst_cond.subst4 subst_assert.subst4 simp add: psi.inject input.inject psi_case.inject)
lemma subst5:
fixes xvec :: "name list"
and Tvec :: "'a list"
and yvec :: "name list"
and Tvec' :: "'a list"
and P :: "('a, 'b, 'c) psi"
and I :: "('a ,'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
assumes "length xvec = length Tvec"
and "distinct xvec"
and "length yvec = length Tvec'"
and "distinct yvec"
and "yvec \<sharp>* xvec"
and "yvec \<sharp>* Tvec"
shows "(subs P (xvec@yvec) (Tvec@Tvec')) = subs (subs P xvec Tvec) yvec Tvec'"
and "(subs' I (xvec@yvec) (Tvec@Tvec')) = subs' (subs' I xvec Tvec) yvec Tvec'"
and "(subs'' C (xvec@yvec) (Tvec@Tvec')) = subs'' (subs'' C xvec Tvec) yvec Tvec'"
using assms
by(nominal_induct P and I and C avoiding: xvec Tvec yvec Tvec' rule: psi_input_psi_case.strong_inducts)
(auto intro: subst_term.subst5 subst_cond.subst5 subst_assert.subst5 simp add: psi.inject input.inject psi_case.inject fresh_list_append)
*)
lemma renaming:
fixes xvec :: "name list"
and Tvec :: "'a list"
and p :: "name prm"
and P :: "('a, 'b, 'c) psi"
and I :: "('a ,'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
assumes "length xvec = length Tvec"
and "set p \<subseteq> set xvec \<times> set (p \<bullet> xvec)"
and "distinct_perm p"
shows "\<lbrakk>(p \<bullet> xvec) \<sharp>* P\<rbrakk> \<Longrightarrow> (subs P xvec Tvec) = subs (p \<bullet> P) (p \<bullet> xvec) Tvec"
and "\<lbrakk>(p \<bullet> xvec) \<sharp>* I\<rbrakk> \<Longrightarrow> (subs' I xvec Tvec) = subs' (p \<bullet> I) (p \<bullet> xvec) Tvec"
and "\<lbrakk>(p \<bullet> xvec) \<sharp>* C\<rbrakk> \<Longrightarrow> (subs'' C xvec Tvec) = subs'' (p \<bullet> C) (p \<bullet> xvec) Tvec"
using assms
by(nominal_induct P and I and C avoiding: xvec p Tvec rule: psi_input_psi_case.strong_inducts)
(auto intro: subst_term.renaming subst_cond.renaming subst_assert.renaming simp add: fresh_chain_simps psi.inject input.inject psi_case.inject)
lemma subst4_chain:
fixes xvec :: "name list"
and Tvec :: "'a list"
and P :: "('a, 'b, 'c) psi"
and I :: "('a, 'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
assumes "length xvec = length Tvec"
and "distinct xvec"
and "xvec \<sharp>* Tvec"
shows "xvec \<sharp>* (subs P xvec Tvec)"
and "xvec \<sharp>* (subs' I xvec Tvec)"
and "xvec \<sharp>* (subs'' C xvec Tvec)"
using assms
by(nominal_induct P and I and C avoiding: xvec Tvec rule: psi_input_psi_case.strong_inducts)
(auto intro: subst_term.subst4_chain subst_cond.subst4_chain subst_assert.subst4_chain simp add: abs_fresh)
(*
lemma subst_empty[simp]:
fixes P :: "('a, 'b, 'c) psi"
and I :: "('a, 'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
shows "(subs P [] []) = P"
and "(subs' I [] []) = I"
and "(subs'' C [] []) = C"
using assms
by(nominal_induct P and I and C rule: psi_input_psi_case.strong_inducts) auto
*)
lemma guarded_subst[simp]:
fixes P :: "('a, 'b, 'c) psi"
and I :: "('a, 'b, 'c) input"
and C :: "('a, 'b, 'c) psi_case"
and xvec :: "name list"
and Tvec :: "'a list"
shows "guarded P \<Longrightarrow> guarded(subs P xvec Tvec)"
and "guarded' I \<Longrightarrow> guarded'(subs' I xvec Tvec)"
and "guarded'' C \<Longrightarrow> guarded''(subs'' C xvec Tvec)"
by(nominal_induct P and I and C avoiding: xvec Tvec rule: psi_input_psi_case.strong_inducts) auto
definition seq_subs :: "('a, 'b, 'c) psi \<Rightarrow> (name list \<times> 'a list) list \<Rightarrow> ('a, 'b, 'c) psi" ("_[<_>]" [80, 80] 130)
where "P[<\<sigma>>] \<equiv> foldl (\<lambda>Q. \<lambda>(xvec, Tvec). subs Q xvec Tvec) P \<sigma>"
definition seq_subs' :: "('a, 'b, 'c) input \<Rightarrow> (name list \<times> 'a list) list \<Rightarrow> ('a, 'b, 'c) input"
where "seq_subs' I \<sigma> \<equiv> foldl (\<lambda>Q. \<lambda>(xvec, Tvec). subs' Q xvec Tvec) I \<sigma>"
definition seq_subs'' :: "('a, 'b, 'c) psi_case \<Rightarrow> (name list \<times> 'a list) list \<Rightarrow> ('a, 'b, 'c) psi_case"
where "seq_subs'' C \<sigma> \<equiv> foldl (\<lambda>Q. \<lambda>(xvec, Tvec). subs'' Q xvec Tvec) C \<sigma>"
lemma subst_input_chain[simp]:
fixes xvec :: "name list"
and N :: "'a"
and P :: "('a, 'b, 'c) psi"
and yvec :: "name list"
and Tvec :: "'a list"
assumes "xvec \<sharp>* yvec"
and "xvec \<sharp>* Tvec"
shows "subs' (input_chain xvec N P) yvec Tvec = input_chain xvec (subst_term N yvec Tvec) (subs P yvec Tvec)"
using assms
by(induct xvec) (auto simp add: psi.inject)
fun case_list_subst :: "('c \<times> ('a, 'b, 'c) psi) list \<Rightarrow> name list \<Rightarrow> 'a list \<Rightarrow> ('c \<times> ('a, 'b, 'c) psi) list"
where
"case_list_subst [] _ _ = []"
| "case_list_subst ((\<phi>, P)#Cs) xvec Tvec = (subst_cond \<phi> xvec Tvec, (subs P xvec Tvec))#(case_list_subst Cs xvec Tvec)"
lemma subst_cases[simp]:
fixes Cs :: "('c \<times> ('a, 'b, 'c) psi) list"
and xvec :: "name list"
and Tvec :: "'a list"
shows "subs (Cases Cs) xvec Tvec = Cases(case_list_subst Cs xvec Tvec)"
by(induct Cs) (auto simp add: psi.inject)
lemma subst_cases'[simp]:
fixes Cs :: "('c \<times> ('a, 'b, 'c) psi) list"
and xvec :: "name list"
and Tvec :: "'a list"
shows "(subs'' (psi_cases Cs) xvec Tvec) = psi_cases(case_list_subst Cs xvec Tvec)"
by(induct Cs) auto
lemma seq_subst_simps[simp]:
shows "seq_subs (\<zero>) \<sigma> = \<zero>"
and "(seq_subs (M\<langle>N\<rangle>.P) \<sigma>) = (subst_term.seq_subst M \<sigma>)\<langle>(subst_term.seq_subst N \<sigma>)\<rangle>.(seq_subs P \<sigma>)"
and "(seq_subs (M\<lparr>I) \<sigma>) = (subst_term.seq_subst M \<sigma>)\<lparr>(seq_subs' I \<sigma>)"
and "(seq_subs (Case C) \<sigma>) = (Case (seq_subs'' C \<sigma>))"