-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathreplay_buffer.py
71 lines (58 loc) · 1.95 KB
/
replay_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""
Data structure for implementing experience replay
Author: Patrick Emami
"""
from collections import deque
import random
import numpy as np
import pickle
class ReplayBuffer(object):
def __init__(self, buffer_size, random_seed=123):
"""
The right side of the deque contains the most recent experiences
"""
self.buffer_size = buffer_size
self.count = 0
self.buffer = deque()
random.seed(random_seed)
def add(self, s, a, r, t, s2):
experience = (s, a, r, t, s2)
if self.count < self.buffer_size:
self.buffer.append(experience)
self.count += 1
else:
self.buffer.popleft()
self.buffer.append(experience)
def size(self):
return self.count
def sample_batch(self, batch_size):
batch = []
if self.count < batch_size:
batch = random.sample(self.buffer, self.count)
else:
batch = random.sample(list(self.buffer), batch_size)
s_batch = np.array([_[0] for _ in batch])
a_batch = np.array([_[1] for _ in batch])
r_batch = np.array([_[2] for _ in batch])
t_batch = np.array([_[3] for _ in batch])
s2_batch = np.array([_[4] for _ in batch])
return s_batch, a_batch, r_batch, t_batch, s2_batch
def clear(self):
self.deque.clear()
self.count = 0
def save(self):
print('saving the replay buffer')
print('.')
file = open('replay_buffer.obj', 'wb')
print('..')
pickle.dump(self.buffer, file)
print('...')
print('the replay buffer was saved succesfully')
def load(self):
try:
filehandler = open('replay_buffer.obj', 'rb')
self.buffer = pickle.load(filehandler)
self.count = len(self.buffer)
print('the replay buffer was loaded succesfully')
except:
print('there was no file to load')