-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathstorage.cpp
254 lines (222 loc) · 6.56 KB
/
storage.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#include "storage.h"
#include "traversal.h"
#include <map>
#include <array>
set_voxel_iterator::set_voxel_iterator(regular_voxel_storage* storage, vec_n<3, size_t> current)
: storage_(storage)
, current_(current)
, bounds_(storage->bounds()) {}
set_voxel_iterator& set_voxel_iterator::operator++() {
size_t i, j, k;
current_.tie(i, j, k);
size_t i0, j0, k0, i1, j1, k1;
bounds_[0].tie(i0, j0, k0);
bounds_[1].tie(i1, j1, k1);
goto break_into;
for (i = i0; i <= i1; ++i) {
for (j = j0; j <= j1; ++j) {
for (k = k0; k <= k1; ++k) {
if (storage_->Get(make_vec(i, j, k))) {
current_ = make_vec(i, j, k);
goto break_out;
}
break_into:
1 == 1;
}
}
}
current_ = storage_->end().current_;
break_out:
return *this;
}
bool set_voxel_iterator::neighbour(const vec_n<3, long>& d) const {
vec_n<3, size_t> v = (current_.as<long>() + d).as<size_t>();
if ((v < bounds_[0]).any() || (v > bounds_[1]).any()) {
return false;
}
return storage_->Get(v);
}
void* set_voxel_iterator::value(void* val) const {
storage_->Get(current_, val);
return val;
}
void* set_voxel_iterator::neighbour_value(const vec_n<3, long>& d, void* val) const {
vec_n<3, size_t> v = (current_.as<long>() + d).as<size_t>();
if ((v < bounds_[0]).any() || (v > bounds_[1]).any()) {
uint8_t* loc = (uint8_t*)val;
// @todo is this correct?
for (int i = 0; i < storage_->value_bits() / 8; ++i) {
(*loc++) = 0;
}
} else {
storage_->Get(v, val);
}
return val;
}
void regular_voxel_storage::obj_export(std::ostream& fs, bool with_components, bool use_value, bool with_vertex_normals) {
obj_export_helper helper(fs);
obj_export(helper, with_components, use_value, with_vertex_normals);
}
void regular_voxel_storage::obj_export(obj_export_helper& obj, bool with_components, bool use_value, bool with_vertex_normals) {
std::ostream& fs = *obj.stream;
// Take care to only emit normals once, even though it does not really affect file integrity
// When computing (averaged) vertex normals we emit them on the fly.
if (!obj.normals_emitted && !with_vertex_normals) {
fs << "vn 1 0 0\n";
fs << "vn -1 0 0\n";
fs << "vn 0 1 0\n";
fs << "vn 0 -1 0\n";
fs << "vn 0 0 1\n";
fs << "vn 0 0 -1\n";
obj.normals_emitted = true;
}
if (with_components && !use_value) {
size_t counter = 0;
connected_components(this, [&obj, &fs, &counter, use_value, with_vertex_normals](regular_voxel_storage* component) {
fs << "g component" << (counter++) << "\n";
component->obj_export(obj, false, use_value, with_vertex_normals);
});
return;
}
// for progress print
// auto N = count();
// size_t n = 0;
size_t& nv = obj.vert_counter;
// big enough?
char V0[8];
char V1[8];
// A map of verte coords (size_t, size_t, size_t) to 0-based index in the OBJ stream
std::map< std::array<size_t, 3>, size_t > vertex_map;
// Only in use when use_value=true
std::map< std::array<long long, 2>, std::vector< std::pair<std::array<size_t, 3>, size_t> > > triangles;
// Only in use when with_vertex_normals=true
std::vector <std::pair<size_t, vec_n<3, long>>> vertex_normals;
const double d = voxel_size();
auto end_ = end();
for (auto it = begin(); it != end_; ++it) {
it.value(V1);
// Loop over 6 directions and store in `n`:
// - (+1, 0, 0)
// - (-1, 0, 0)
// - (0, +1, 0)
// - (0, -1, 0)
// - (0, 0, +1)
// - (0, 0, -1)
for (size_t f = 0; f < 6; ++f) {
vec_n<3, long> n;
size_t normal = f / 2;
size_t o0 = (normal + 1) % 3;
size_t o1 = (normal + 2) % 3;
size_t side = f % 2;
for (size_t i = 0; i < 3; ++i) {
if (i == normal) {
n.get(i) = side ? 1 : -1;
break;
}
}
if (use_value
? (
!equal_pointed_to(value_bits() / 8, it.neighbour_value(n, V0), V1) &&
(!(!is_zero(value_bits() / 8, V0) && !is_zero(value_bits() / 8, V1)) || side)
)
: !it.neighbour(n))
{
std::array< std::array<size_t, 3>, 4 > vs;
vs.fill((*it).as_array());
vs[1][o0] += 1;
vs[2][o0] += 1;
vs[2][o1] += 1;
vs[3][o1] += 1;
if (!side) {
std::reverse(vs.begin(), vs.end());
}
for (auto& v : vs) {
if (side) {
v[normal] += 1;
}
auto inserted = vertex_map.insert({ v, vertex_map.size() + nv });
if (inserted.second) {
fs << "v";
for (int i = 0; i < 3; ++i) {
fs << " " << (v[i] * d + origin().get(i));
}
fs << "\n";
if (with_vertex_normals) {
vertex_normals.emplace_back();
}
}
if (with_vertex_normals) {
auto vi = inserted.first->second - nv;
vertex_normals[vi].first++;
vertex_normals[vi].second += n;
}
}
static std::array< std::array<int, 3>, 2 > indices = {{
{{0,1,2}},
{{0,2,3}}
}};
if (!use_value) {
for (auto& i : indices) {
fs << "f";
for (auto& j : i) {
auto vi = vertex_map.find(vs[j])->second;
fs << " " << vi << "//" << (with_vertex_normals ? vi : (f+1));
}
fs << "\n";
}
} else {
auto va = to_number(value_bits() / 8, V0);
auto vb = to_number(value_bits() / 8, V1);
if (va > vb) {
std::swap(va, vb);
}
for (auto& i : indices) {
std::array<size_t, 3> arr;
for (int j = 0; j < 3; ++j) {
arr[j] = vertex_map.find(vs[i[j]])->second;
}
triangles[{ { va, vb }}].push_back({ arr, f + 1 });
}
}
}
}
/*
if (n % 1000) {
std::cout << n * 100 / N << std::endl;
}
n++;
*/
}
for (auto& vn : vertex_normals) {
fs << "vn";
// @todo dividing by number of associated facets is not really
// nessary as we take norm2 anyway?
auto vnf = vn.second.as<float>() / vn.first;
auto vnf_normalized = vnf / vnf.norm2();
for (int i = 0; i < 3; ++i) {
fs << " " << vnf_normalized.get(i);
}
fs << "\n";
}
for (const auto& p : triangles) {
fs << "g " << p.first[0] << "-" << p.first[1] << "\n";
for (const auto& t : p.second) {
fs << "f";
for (auto& i : t.first) {
fs << " " << i << "//" << t.second;
}
fs << "\n";
}
}
nv += vertex_map.size();
}
regular_voxel_storage* storage_for(std::array< vec_n<3, double>, 2 >& bounds, size_t max_extents, size_t padding, size_t chunk_size) {
auto bounds_size = bounds[1] - bounds[0];
auto voxel_size = (bounds_size / (double)max_extents).max_element();
auto extents = (bounds_size / voxel_size).ceil().as<size_t>();
double x1, y1, z1;
decltype(extents)::element_type nx, ny, nz;
(bounds[0] - (padding*voxel_size)).tie(x1, y1, z1);
(extents + 2 * padding).tie(nx, ny, nz);
return new chunked_voxel_storage<bit_t>(x1, y1, z1, voxel_size, nx, ny, nz, chunk_size);
}