-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathedge_detect.h
263 lines (216 loc) · 6.78 KB
/
edge_detect.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#ifndef EDGE_DETECT_H
#define EDGE_DETECT_H
#include "storage.h"
#include "progress_writer.h"
#include <boost/optional.hpp>
#include <thread>
// A post process (ie. subtype of post_process) is a functor that takes a voxel storage
// applies a procedure (such as edge detection, filling gaps, extrusion, ...) and returns
// a new voxel storage with the operation applied.
class post_process {
protected:
boost::optional<std::function<void(int)>> progress_callback;
boost::optional<std::function<void(float)>> application_progress_callback;
void progress(float f) {
if (application_progress_callback) {
(*application_progress_callback)(f);
}
if (!silent) {
if (progress_callback) {
(*progress_callback)(static_cast<int>(f * 100.));
}
}
}
public:
bool silent = false;
void set_progress_callback(boost::optional<std::function<void(int)>> cb) {
progress_callback = cb;
}
void set_progress_callback(boost::optional<std::function<void(float)>> cb) {
application_progress_callback = cb;
}
virtual regular_voxel_storage* operator()(regular_voxel_storage*) = 0;
virtual ~post_process() {}
};
// A threaded post process is a special kind of post process that can be parallelized
// by taking applying the operation in parallel to multiple subregions of the voxel
// storage. These are almost always local operations as opposed to the queue based
// operations in traversal.h
template <typename T>
class threaded_post_process : public post_process {
private:
size_t n_;
public:
threaded_post_process(size_t n)
: n_(n > 0 ? n : std::thread::hardware_concurrency())
{}
regular_voxel_storage* operator()(regular_voxel_storage* storage) {
progress_writer p(typeid(T).name(), silent);
std::vector<std::thread> ts;
std::vector<regular_voxel_storage*> results(n_);
ts.reserve(n_);
auto progress = p.thread(n_);
progress.application_progress_callback = application_progress_callback;
size_t x0 = 0;
// std::cerr << std::endl << "full " << storage->bounds()[0].format() << " - " << storage->bounds()[1].format() << std::endl;
// std::cerr << " count " << storage->count() << std::endl;
if (n_ == 1) {
T t;
t.set_progress_callback(std::function<void(int)>([&progress](int p) {
progress(0, p);
}));
results[0] = t(storage);
} else {
// Create regions
std::vector<voxel_region*> regions;
regions.reserve(n_);
for (size_t i = 0; i < n_; ++i) {
regions.push_back(voxel_region::make(storage, i, n_));
// std::cerr << "region " << i << " " << regions.back()->bounds()[0].format() << " - " << regions.back()->bounds()[1].format() << std::endl;
// std::cerr << " count " << regions.back()->count() << std::endl;
}
auto is_chunked = dynamic_cast<abstract_chunked_voxel_storage*>(storage);
if (is_chunked) {
is_chunked->lock_bounds();
}
// Launch threads
for (size_t i = 0; i < n_; ++i) {
ts.emplace_back(std::thread([this, i, ®ions, &results, &progress]() {
T t;
t.set_progress_callback(std::function<void(int)>([&progress, i](int p) {
progress(i, p);
}));
// @todo: on nix we sometimes get an empty result back. Is this due to the mutable bounds_ in abstract abstract_voxel_storage?
results[i] = t(regions[i]);
}));
}
// Wait for completion
for (auto jt = ts.begin(); jt != ts.end(); ++jt) {
jt->join();
}
if (is_chunked) {
is_chunked->unlock_bounds();
}
}
// std::cerr << std::endl;
regular_voxel_storage* first = 0;
for (auto jt = results.begin(); jt != results.end(); ++jt) {
if (*jt) {
if (first == 0) {
first = *jt;
} else {
// std::cerr << " + " << (*jt)->bounds()[0].format() << " - " << (*jt)->bounds()[1].format() << std::endl;
first->boolean_union_inplace(*jt);
delete *jt;
}
if (n_ > 1) {
// std::cerr << "boolean union " << std::distance(results.begin(), jt) << " " << first->bounds()[0].format() << " - " << first->bounds()[1].format() << std::endl;
}
}
}
if (T::UNION_INPUT) {
first->boolean_union_inplace(storage);
// std::cerr << "boolean union final " << first->bounds()[0].format() << " - " << first->bounds()[1].format() << std::endl;
}
return first;
}
};
class edge_detect : public post_process {
private:
regular_voxel_storage* storage_;
regular_voxel_storage* output_;
bool* empty_chunks_;
size_t chunk_size_;
vec_n<3, size_t> num_chunks_;
std::array<vec_n<3, size_t>, 2> extents_;
bool get_(const vec_n<3, size_t>& pos) {
if ((pos < extents_[0]).any()) {
return false;
}
if ((pos > extents_[1]).any()) {
return false;
}
if (chunk_size_) {
if (empty_chunk(pos / chunk_size_)) {
return false;
}
}
return storage_->Get(pos);
}
void init_(regular_voxel_storage* storage) {
storage_ = storage;
output_ = (regular_voxel_storage*)storage_->empty_copy();
extents_ = storage->bounds();
chunked_voxel_storage<bit_t>* cvs;
if ((cvs = dynamic_cast<chunked_voxel_storage<bit_t>*>(storage))) {
chunk_size_ = cvs->chunk_size();
num_chunks_ = storage_->extents().ceil_div(chunk_size_);
size_t n = num_chunks_.get<0>() * num_chunks_.get<1>() * num_chunks_.get<2>();
empty_chunks_ = new bool[n] {false};
auto cs = cvs->empty_chunks();
for (auto& c : cs) {
empty_chunk(c) = true;
}
}
}
bool& empty_chunk(const vec_n<3, size_t>& c) {
return empty_chunks_[c.get(0) + (num_chunks_.get(0) * c.get(1)) + (num_chunks_.get(0) * num_chunks_.get(1) * c.get(2))];
}
public:
static const bool UNION_INPUT = false;
edge_detect()
: empty_chunks_(nullptr)
, chunk_size_(0) {}
~edge_detect() {
delete[] empty_chunks_;
}
regular_voxel_storage* operator()(regular_voxel_storage* storage) {
init_(storage);
size_t i0, i1, j0, j1, k0, k1;
extents_[0].tie(i0, j0, k0);
extents_[1].tie(i1, j1, k1);
vec_n<3, size_t> ijk;
for (long i = i0; i <= (long) i1; ++i) {
ijk.get(0) = i;
for (long j = j0; j <= (long)j1; ++j) {
ijk.get(1) = j;
bool inside = false;
for (long k = k0; k <= (long) k1; ++k) {
ijk.get(2) = k;
bool some_set = false, some_unset = false;
const vec_n<3> ijk = vec_n<3, long>(i, j, k).as<size_t>();
if (!get_(ijk)) {
continue;
}
for (int di = -1; di <= 1; ++di) {
for (int dj = -1; dj <= 1; ++dj) {
for (int dk = -1; dk <= 1; ++dk) {
const vec_n<3> ijk0 = vec_n<3, long>(i + di, j + dj, k + dk).as<size_t>();
if ((ijk0 == ijk).all()) {
continue;
}
if (get_(ijk0)) {
some_set = true;
if (some_unset) {
goto break_all;
}
} else {
some_unset = true;
if (some_set) {
goto break_all;
}
}
}
}
}
break_all:
if (some_set && some_unset) {
output_->Set(ijk);
}
}
}
}
return output_;
}
};
#endif